【题目】某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间,,进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.
(1)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”;
甲班 | 乙班 | 总计 | |
大于等于80分的人数 | |||
小于80分的人数 | |||
总计 |
(2)从乙班分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.附:,
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
【答案】(1)表格见解析,有90%以上的把握认为“数学成绩优秀与教学改革有关”(2)分布列见解析,期望为
【解析】
(1)根据频率分别直方图分别求出甲、乙两班大于等于80分的人数,即可完成列联表,求出对比所提供的数据,即可得出结论;
(2)先求出乙班的频率,根据条件7人中来自发言的人数为3人,随机变量的所有可能取值为0,1,2,3,按照求古典概型的概率方法,求出随机变量的概率,即可求解.
(1)列联表如下:
甲班 | 乙班 | 总计 | |
大于等于80分的人数 | 12 | 20 | 32 |
小于80分的人数 | 28 | 20 | 48 |
总计 | 40 | 40 | 80 |
依题意得,
有90%以上的把握认为“数学成绩优秀与教学改革有关”.
(2)从乙班
乙班频率分别为,
分数段中抽人数分别为2,3,2,
依题意随机变量的所有可能取值为0,1,2,3,
,,
,,
∴的分布列为:
0 | 1 | 2 | 3 | |
∴.
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为、,,点在椭圆上,且的周长为
(Ⅰ)求椭圆的方程;
(Ⅱ)若点的坐标为,不过原点的直线与椭圆相交于,两点,设线段的中点为,点到直线的距离为,且,,三点共线,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A'B'C',AC=2,BC=4,∠ACB=120°,∠ACC'=90°,且平面AB'C⊥平面ABC,二面角A'﹣AC﹣B'为30°,E、F分别为A'C、B'C'的中点.
(1)求证:EF∥平面AB'C;
(2)求B'到平面ABC的距离;
(3)求二面角A﹣BB'﹣C'的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4坐标系与参数方程选讲
在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为(为参数),直线与曲线分别交于,两点.
(1)写出曲线的平面直角坐标方程和直线的普通方程:
(2)若成等比数列,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:=1(a>b>0)的左焦点分别为F1(-c,0),F2(c,0),过F2作垂直于x轴的直线l交椭圆C于A、B两点,满足|AF2|=c.
(1)椭圆C的离心率;
(2)M、N是椭圆C短轴的两个端点,设点P是椭圆C上一点(异于椭圆C的顶点),直线MP、NP分别和x轴相交于R、Q两点,O为坐标原点,若|OR||OQ|=4,求椭圆C的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com