精英家教网 > 高中数学 > 题目详情

【题目】为了提升学生数学建模的核心素养,某校数学兴趣活动小组指导老师给学生布置了一项探究任务:如图,有一张边长为27cm的等边三角形纸片ABC,从中裁出等边三角形纸片作为底面,从剩余梯形中裁出三个全等的矩形作为侧面,围成一个无盖的三棱柱(不计损耗).

1)若三棱柱的侧面积等于底面积,求此三棱柱的底面边长;

2)当三棱柱的底面边长为何值时,三棱柱的体积最大?

【答案】118cm218cm

【解析】

(1) 设三棱柱的底面边长为,再根据三角形中的关系表达出底面积和与侧面积的关系式再解方程即可.

(2)(1)可知,再求导分析函数的单调性求最大值即可.

设三棱柱的底面边长为,,

.

因为为等边三角形,

所以三棱柱的高为.

1)因为三棱柱的底面积为,

侧面积为,

所以,

解得(舍去).

即三棱柱的底面边长为18cm.

2)三棱柱的体积.

因为,,

所以.

因为,

所以当,,单调递增;

,,单调递减.

所以当,取到极大值,也是最大值,

.

即当底面边长为18cm,三棱柱的体积最大,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面是边长为2的菱形,平面分别是棱的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬我国古代的六艺文化,某夏令营主办单位计划利用暑期开设”“”“”“”“”“六门体验课程,每周一门,连续开设六周.课程不排在第一周,课程不排在最后一周的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为θ为参数),直线l的参数方程为m为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴,建立坐标系.

1)求曲线C的极坐标方程;

2)直线l与曲线C相交于MN两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,从P中任取2个元素,分别记为ab.

1)若,随机变量X表示ab3除的余数,求的概率;

2)若),随机变量Y表示5除的余数,求Y的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示,其中点的坐标为.

1)求函数的最小正周期;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,椭圆的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求经过椭圆右焦点且与直线垂直的直线的极坐标方程;

(2)若为椭圆上任意-点,当点到直线距离最小时,求点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,四边形为菱形,为等腰直角三角形,,则异面直线AB所成角的余弦值为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知圆的参数方程为为参数,).以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.

(1)若直线与圆有公共点,试求实数的取值范围;

(2)当时,过点且与直线平行的直线交圆两点,求的值.

查看答案和解析>>

同步练习册答案