精英家教网 > 高中数学 > 题目详情
4.一个圆锥的侧面展开图是圆心角为$\frac{4π}{3}$,半径为6cm的扇形,则此圆锥的体积为$\frac{16\sqrt{5}π}{3}$cm3

分析 由于圆锥侧面展开图是一个圆心角为 $\frac{4π}{3}$,半径为6cm的扇形,可知圆锥的母线长,底面周长即扇形的弧长,由此可以求圆锥的底面的半径r,求出底面圆的面积,求出圆锥的高,然后代入圆锥的体积公式求出体积.

解答 解:∵圆锥侧面展开图是一个圆心角为$\frac{4π}{3}$半径为6cm的扇形
∴圆锥的母线长为l=6,底面周长即扇形的弧长为$\frac{4π}{3}$×6=8π,
∴底面圆的半径r=4,可得底面圆的面积为π×r2=16π
又圆锥的高h=$\sqrt{{l}^{2}-{r}^{2}}$=$\sqrt{36-16}$=2$\sqrt{5}$
故圆锥的体积为V=$\frac{1}{3}$×8π×2$\sqrt{5}$=$\frac{16\sqrt{5}π}{3}$,(cm3).
故答案为:$\frac{16\sqrt{5}π}{3}$cm3

点评 本题考查弧长公式及旋转体的体积公式,解答此类问题关键是求相关几何量的数据,本题考查了空间想像能力及运用公式计算的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知|$\overrightarrow{a}$|=2$\sqrt{3}$,$\overrightarrow{b}$=(-1,$\sqrt{3}$),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=($\sqrt{3},-3$)或($-\sqrt{3},3$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1-{a}^{x}}{1+{a}^{x}}$,(a>0,a≠1).
(1)判断函数f(x)的奇偶性;
(2)a=2时,函数g(x)和f(x)的图象关于直线x=1对称,求函数g(x)的解析式;进一步研究函数G(x)=|g(x)|的图象有什么性质.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.用诱导公式求下列三角函数值(可用计算器):
(1)cos$\frac{65}{6}$π;
(2)sin(-$\frac{31}{4}$π);
(3)sin670°39′;
(4)tan(-$\frac{26π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,对任意n∈N+,都有an>an+1,且a2,a8是方程x2-12x+m=0的两根,且前15项的和S15=m,则数列{an}的公差是(  )
A.-2或-3B.2或3C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定积分$\int_0^1{({2x-{e^x}})dx}$的值为2-e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=$\sqrt{3}$sin(x+φ)-cos(x+φ)(0<φ<π)为奇函数,将函数f(x)图象上所有点横坐标变为原来的一半,纵坐标不变;再向右平移$\frac{π}{8}$个单位得到函数g(x),则g(x)的解析式可以是(  )
A.$g(x)=2sin(2x-\frac{π}{4})$B.$g(x)=2sin(2x-\frac{π}{8})$C.$g(x)=2sin(\frac{1}{2}x-\frac{π}{4})$D.$g(x)=2sin(\frac{1}{2}x-\frac{π}{16})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合$A=\{x|a-1<x<3a+2\},B=\{x|\frac{1}{4}<{2^{x-1}}<4\}$.
(Ⅰ)若a=1,求A∩B;
(Ⅱ)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f(x)=$\left\{{\begin{array}{l}{{{log}_2}x,}&{x>0}\\{{2^x},}&{x≤0}\end{array}}$,则$f(f(\frac{1}{2}))$的值为$\frac{1}{2}$,不等式f(x)>$\frac{1}{2}$的解集为$(-1,0]∪(\sqrt{2},+∞)$.

查看答案和解析>>

同步练习册答案