精英家教网 > 高中数学 > 题目详情
10.抛掷两枚骰子,所得两个点数中一个为奇数另一个为偶数的概率为$\frac{1}{2}$.

分析 抛掷两枚骰子,观察两枚骰子出现的点数情况,先求出基本事件总数,再用列举法求出所得两个点数中一个为奇数另一个为偶数,包含的基本事件个数,由此能求出结果.

解答 解:抛掷两枚骰子,观察两枚骰子出现的点数情况,基本事件总数n=6×6=36,
所得两个点数中一个为奇数另一个为偶数,包含的基本事件有:
(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),
(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),
(5,2),(5,4),(5,6),(6,1),(6,3),(6,5),共18个,
∴抛掷两枚骰子,所得两个点数中一个为奇数另一个为偶数的概率为:
p=$\frac{18}{36}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在梯形ABCD中,∠ABC=$\frac{π}{2}$,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为$\frac{5π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若抛物线y2=8x上一点P到其焦点的距离为9,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(1)△ABC中,a=3$\sqrt{3}$,c=2,B=150°,求b.
(2)△ABC中,a=2,b=$\sqrt{2}$,c=$\sqrt{3}$+1,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=cos(ωx),(ω>0,x∈R),将y=f(x)的图象向右平移$\frac{2π}{3}$个单位长度后,所得的图象与原图象重合,则ω的值不可能等于(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+ax2+bx+c (a,b,c∈R)在x=-1处有极值,在x=3处的切线方程为y=-16.
(1)求a,b,c的值;
(2)求函数f(x)在[-3,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P为AB边上一动点,PD∥BC交AC于点D,现将△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD.
(1)当棱锥A′PBCD的体积最大时,求PA的长;
(2)若点P为AB的中点,E为A′C的中点,求证:DE⊥平面A′BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,a1=2,且满足${a_{n+1}}={S_n}+{2^{n+1}}$(n∈N*).
(Ⅰ)证明数列$\{\frac{S_n}{2^n}\}$为等差数列;
(Ⅱ)求S1+S2+…+Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O,D分别是AC,PC的中点,OP⊥底面ABC.
(1)求证:OD∥平面PAB;
(2)当k=$\frac{1}{2}$时,求直线PA与平面PBC所成角的大小.

查看答案和解析>>

同步练习册答案