【题目】已知向量 =(cos2x, sinx), =(1,cosx),函数f(x)=2 +m,且当x∈[0, ]时,f(x)的最小值为2.
(1)求m的值,并求f(x)图象的对称轴方程;
(2)设函数g(x)=[f(x)2]﹣f(x),x∈[0, ],求g(x)的最大值.
【答案】
(1)解:∵ =(cos2x, sinx), =(1,cosx),
∴f(x)=2 +m
=2cos2x+2 sinxcosx+m
=cos2x+ sin2x+m+1
=2sin(2x+ )+m+1,
又x∈[0, ],
∴sin(2x+ )∈[ ,1],
∴f(x)的最小值为m+2=2,解得m=0;
∴f(x)=2sin(2x+ )+1;
令2x+ =kπ+ ,k∈Z,
得f(x)图象的对称轴方程为x= + ,k∈Z;
(2)解:由(1)知x∈[0, ]时,
sin(2x+ )∈[ ,1],f(x)∈[2,3];
设f(x)=t,则y=g(t)=t2﹣t,t∈[2,3],
∴t=3时y取得最大值6;
即函数g(x)的最大值为6.
【解析】(1)根据平面向量数量积的坐标运算,利用三角恒等变换公式,即可求出结果;(2)求出f(x)的值域,再用换元法计算设f(x)=t,求y=g(t)的最大值即可.
科目:高中数学 来源: 题型:
【题目】已知a>0,设命题p:函数f(x)=x2﹣2ax+1﹣2a在区间[0,1]上与x轴有两个不同的交点;命题q:g(x)=|x﹣a|﹣ax有最小值.若(¬p)∧q是真命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为正方形,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为(m2).
(1)求关于的函数关系式;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(x1 , f(x1),B(x2 , f(x2))是函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)图象上的任意两点,且初相φ的终边经过点P(1,﹣ ),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为 .
(1)求函数f(x)的解析式;
(2)当x∈[0, ]时,求函数f(x)的单调递增区间;
(3)当x∈[0, ]时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+ )升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2014年推出一种新型家用轿车,购买时费用为14.4万元,每年应交付保险费、养路费及汽车油费共0.7万元,
汽车维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费用均比上一年增加0.2万元
(1)设该辆轿车使用n年的总费用(包括购买费用,保险费,养路费,汽车费及维修费)为f(n),求f(n)的表达式.
(2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位“准笑星”在“信阳笑星”选拔赛中,5位评委给出的评分情况如图所示,记甲、乙两人的平均得分分别为 、 ,记甲、乙两人得分的标准差分别为s1、s2 , 则下列判断正确的是( )
A.< ,s1<s2
B.< ,s1>s2
C.> ,s1<s2
D.> ,s1>s2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com