精英家教网 > 高中数学 > 题目详情
19.已知O为坐标原点,A,B两点的坐标均满足不等式组$\left\{\begin{array}{l}{x-3y+1≤0}\\{x+y-3≤0}\\{x-1≥0}\end{array}\right.$,设$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为θ,则sinθ的最大值为(  )
A.$\frac{1}{2}$B.$\frac{4\sqrt{65}}{65}$C.$\frac{4}{5}$D.$\frac{3}{5}$

分析 作出不等式组对应的平面区域,利用数形结合求出A,B的位置,利用向量的数量积求出夹角的余弦,即可得到结论.

解答 解:作出不等式组对应的平面区域,要使sinθ最大,
则由$\left\{\begin{array}{l}{x=1}\\{x+y-3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
由$\left\{\begin{array}{l}{x-3y+1=0}\\{x+y-3=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即B(2,1),
∴此时夹角θ最大,
则$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(2,1),
则cosθ=$\frac{\overrightarrow{OA}•\overrightarrow{OB}}{|\overrightarrow{OA}|•\overrightarrow{|OB}|}$=$\frac{1×2+2×1}{\sqrt{5}×\sqrt{5}}=\frac{4}{5}$,
∴sinθ=$\frac{3}{5}$.
故选:D.

点评 本题主要考查线性规划的应用,以及向量的数量积运算,利用数形结合是解决本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.等比数列{an}中,已知a1=3,an=96,其前n顶和Sn=189,则n的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x1,x2,x3,x4,x5是1,2,3,4,5的任一排列,则x1+2x2+3x3+4x4+5x5的最小值是35.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系中,点P是直线l:x=-$\frac{1}{2}$上一动点,定点F($\frac{1}{2}$,0),点Q为PF的中点,动点M满足$\overrightarrow{MQ}$•$\overrightarrow{PF}$=0,$\overrightarrow{MP}$=λ$\overrightarrow{OF}$(λ∈R),过点M作圆(x-3)2+y2=2的切线,切点分别为S,T,则满足|ST|的最小值为$\frac{2\sqrt{30}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知扇形的半径为3cm,圆心角为2弧度,则扇形的面积为9cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个三棱锥的三视图如图所示,则该三棱锥的表面积为(  )
A.2+2$\sqrt{5}$+$\sqrt{14}$B.16+2$\sqrt{14}$C.8+2$\sqrt{14}$D.8+$\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.sin(-435°)的值等于$-\frac{\sqrt{2}+\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.先把函数y=cosx的图象上所有点向右平移$\frac{π}{3}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到的函数图象的解析式为(  )
A.y=cos(2x+$\frac{π}{3}$)B.y=cos(2x-$\frac{π}{3}$)C.y=cos($\frac{1}{2}$x+$\frac{π}{3}$)D.y=cos($\frac{1}{2}$x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}满足a3=5,a5+a7=22,等差数列{an}的前n项和Sn
(Ⅰ)求数列{an}的通项an和前n项和Sn
(Ⅱ)若bn=2nan,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案