精英家教网 > 高中数学 > 题目详情
已知函数C的离心率为
2
2
,且椭圆C的左焦点F1与抛物线y2=-4x的焦点重合.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点F1(-1,0),F2(1,0)到一斜率存在的动直线l的距离之距离之积为1,试问直线l是否与椭圆C一定有唯一的公共点?并说明理由.
考点:直线与圆锥曲线的关系,椭圆的标准方程
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:(Ⅰ)求出抛物线的焦点,即有椭圆的c=1,再由离心率公式,可得c,再由a,b,c的关系,可得b,进而得到椭圆方程;
(Ⅱ)设直线l的方程为y=kx+p,运用点到直线的距离公式,得到方程,讨论去绝对值,再由直线方程和椭圆方程联立,消去y,运用判别式即可判断.
解答: 解:(Ⅰ)由于抛物线y2=-4x的焦点为(-1,0),
设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0),
易知c=1,又
c
a
=
2
2
,得a=
2
,于是有b=
a2-c2
=1
故椭圆C的标准方程为
x2
2
+y2
=1.                                                  
(Ⅱ)设直线l的方程为y=kx+p,即kx-y+p=0,
于是点F1(-1,0),F2(1,0)到直线L的距离之积为
|-k+p|
1+k2
|k+p|
1+k2
=1,即
|p2-k2|
1+k2
=1,即|p2-k2|=1+k2
若p2-k2=-k2-1,则p2=-1,矛盾,舍去.
若p2-k2=1+k2,则p2=1+2k2
y=kx+p
x2+2y2=2
,消去y,可得(1+2k2)x2+4px+2p2-2=0,
所以判别式△=16k2p2-4(1+2k2)(2p2-2)=8(1+2k2-p2)=8(p2-p2)=0,
即直线l与椭圆C相切,一定有唯一的公共点.
点评:本题考查椭圆方程和性质,考查直线方程和椭圆方程联立,消去未知数,运用判别式判断直线与椭圆的位置关系,考查点到直线的距离公式,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设i为虚数单位,复数z=(1+i)2,则z的共轭复数为(  )
A、-2iB、2i
C、2-2iD、2+2i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1,3},B={x|y=ln(x-1)},则A∩B=(  )
A、{0,1,3}B、{1,3}
C、{3}D、Φ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别是F1,F2,过点F1的直线l交椭圆C于A,B两点,若△AF2B的周长为16,过焦点F1且垂直于长轴的直线被椭圆截得的线段长为2,则椭圆C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px焦点F的直线交抛物线于A,B两点,过B点作其准线的垂线,垂足为D,设O为坐标原点,问,是否存在实数向量
AO
OD

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆mx2+ny2=1(m>0,n>0)与直线x+y-1=0交于A,B两点,若m:n=1:
2
,则过原点与线段AB的中点M的连线的斜率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1
x2
)=f(x1)-f(x2),且当x>1时,f(x)>0,求f(1),并判断f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三个内角A,B,C的对边分别为a,b,c,且满足2bcosC+c=2a
(Ⅰ)求B;
(Ⅱ)若a=2,且sin(2A+
π
6
)+cos2A=
3
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α,β和直线m,给出以下条件:①m∥α;②m⊥α;③m?α;④α∥β.要使m⊥β,则所满足的条件是
 
. (填所选条件的序号)

查看答案和解析>>

同步练习册答案