【题目】函数的图象的对称轴之间的最短距离为,且经过点.
(1)写出函数的解析式;
(2)若对任意的,恒成立,求实数的取值范围;
(3)求实数和正整数,使得在上恰有2017个零点.
【答案】(1) ;(2) ;(3)或时,;时,
【解析】
(1)由对称轴及图像上一点,待定系数可得函数解析式;
(2)求值域,换元后,转化为二次函数恒成立问题求参数;
(3)将零点问题转化为交点问题,先考虑一个周期的情况,再进行延拓.
(1)的图象的对称轴之间的最短距离为,
故其周期为,解得;
又经过点,故,
解得
又因为,故可得,
故.
(2)若对任意的,,
故,
因为恒成立,
令,
恒成立,只需:
,且,
解得.
(3)∵在上恰有2017个零点,
故的图象和直线在上恰有2017个交点.
先考虑在在上的交点情况,
不妨作出在上的图像如下:
①当,或时,
的图象和直线在上无交点.
②当,或时,
的图象和直线在仅有一个交点,
此时,的图象和直线在上恰有2017个交点,
则.
③当,或时,
的图象和直线在上恰有2个交点,
的图象和直线在上有偶数个交点,不会有2017个交点.
④当时,
的图象和直线在上恰有3个交点,
此时,,才能使的图象和直线在上有2017个交点.
综上可得,当,或时,;
当时,此时,.
科目:高中数学 来源: 题型:
【题目】设直线的方程为.
(1)求证:不论为何值,直线必过一定点;
(2)若直线分别与轴正半轴,轴正半轴交于点,,当而积最小时,求的周长;
(3)当直线在两坐标轴上的截距均为整数时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆:的左、右焦点分别为,椭圆上一点与两焦点构成的三角形的周长为,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线交椭圆于两点,问在轴上是否存在定点,使得为定值?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司决定每月给推销员确定个具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图.
(1)①根据图中数据,求出月销售额在小组内的频率.
②根据直方图估计,月销售目标定为多少万元时,能够使70%的推销员完成任务?并说明理由.
(2)该公司决定从月销售额为和的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 C:的离心率为,以短轴为直径的圆被直线 x+y-1 = 0 截得的弦长为.
(1) 求椭圆 C 的方程;
(2) 设 A, B 分别为椭圆的左、右顶点, D 为椭圆右准线 l 与 x 轴的交点, E 为 l上的另一个点,直线 EB 与椭圆交于另一点F,是否存在点 E,使 R)? 若存在,求出点 E 的坐标;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数与,若存在实数满足,且,则称为的一个点.
(1)证明:函数与不存在的点;
(2)若函数与存在的点,求的范围;
(3)已知函数,证明:存在正实数,对于区间内任意一个皆是函数的点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知,线段与弧、弧的长度之和为米,圆心角为弧度.
(1)求关于的函数解析式;
(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点,,且圆心在直线上
(1)求圆C的方程.
(2)过点的直线与圆C交于A,B两点,问:在直线上是否存在定点N,使得(,分别为直线AN,BN的斜率)恒成立?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com