精英家教网 > 高中数学 > 题目详情

【题目】函数的图象的对称轴之间的最短距离为,且经过点.

1)写出函数的解析式;

2)若对任意的恒成立,求实数的取值范围;

3)求实数和正整数,使得上恰有2017个零点.

【答案】1 ;(2 ;(3时,时,

【解析】

1)由对称轴及图像上一点,待定系数可得函数解析式;

2)求值域,换元后,转化为二次函数恒成立问题求参数;

3)将零点问题转化为交点问题,先考虑一个周期的情况,再进行延拓.

1的图象的对称轴之间的最短距离为

故其周期为,解得

经过点,故

解得

又因为,故可得

.

2)若对任意的

因为恒成立,

恒成立,只需:

,且

解得.

3)∵上恰有2017个零点,

的图象和直线上恰有2017个交点.

先考虑在在上的交点情况,

不妨作出上的图像如下:

①当,或时,

的图象和直线上无交点.

②当,或时,

的图象和直线仅有一个交点,

此时,的图象和直线上恰有2017个交点,

.

③当,或时,

的图象和直线上恰有2个交点,

的图象和直线上有偶数个交点,不会有2017个交点.

④当时,

的图象和直线上恰有3个交点,

此时,,才能使的图象和直线上有2017个交点.

综上可得,当,或时,

时,此时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设直线的方程为.

(1)求证:不论为何值,直线必过一定点;

(2)若直线分别与轴正半轴,轴正半轴交于点,当而积最小时,求的周长;

(3)当直线在两坐标轴上的截距均为整数时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上函数,若函数关于点对称,且则关于x的方程()n个不同的实数解,则n的所有可能的值为( )

A.2B.4

C.24D.246

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为,椭圆上一点与两焦点构成的三角形的周长为,离心率为.

求椭圆的方程;

过点的直线交椭圆两点,问在轴上是否存在定点,使得为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司决定每月给推销员确定个具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图.

1)①根据图中数据,求出月销售额在小组内的频率.

②根据直方图估计,月销售目标定为多少万元时,能够使70%的推销员完成任务?并说明理由.

2)该公司决定从月销售额为的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 C:的离心率为,以短轴为直径的圆被直线 x+y-1 = 0 截得的弦长为

(1) 求椭圆 C 的方程;

(2) A, B 分别为椭圆的左、右顶点, D 为椭圆右准线 l x 轴的交点, E l上的另一个点,直线 EB 与椭圆交于另一点F,是否存在点 E,使 R)? 若存在,求出点 E 的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在实数满足,且,则称的一个.

(1)证明:函数不存在点;

(2)若函数存在,求的范围;

(3)已知函数,证明:存在正实数,对于区间内任意一个皆是函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知,线段与弧的长度之和为米,圆心角为弧度.

(1)关于的函数解析式;

(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点,且圆心在直线

1)求圆C的方程.

2)过点的直线与圆C交于AB两点,问:在直线上是否存在定点N,使得分别为直线ANBN的斜率)恒成立?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案