精英家教网 > 高中数学 > 题目详情

(05年辽宁卷)(14分)

已知椭圆的左、右焦点分别是

是椭圆外的动点,满足

点P是线段与该椭圆的交点,点T在线段上,并且

满足

(Ⅰ)设为点P的横坐标,证明

(Ⅱ)求点T的轨迹C的方程;

(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△的面积.若存在,求

的正切值;若不存在,请说明理由.

 

 

解析:(Ⅰ)证法一:设点P的坐标为

由P在椭圆上,得

,所以             ……3分

证法二:设点P的坐标为

,得

证法三:设点P的坐标为

椭圆的左准线方程为

      由椭圆第二定义得,即

       由,所以            ……3分

 

(Ⅱ)解法一:设点T的坐标为 

           当时,点(,0)和点(-,0)在轨迹上.

当|时,

,得.

,所以T为线段F2Q的中点.

在△QF1F2中,,所以有

综上所述,点T的轨迹C的方程是                ……7分

 

解法二:设点T的坐标为 当时,点(,0)和点(-,0)在轨迹上.

       当|时,由,得.

       又,所以T为线段F2Q的中点.

       设点Q的坐标为(),则

       因此                          ①

       由        ②

       将①代入②,可得

       综上所述,点T的轨迹C的方程是                ……7分

   (Ⅲ)解法一:C上存在点M()使S=的充要条件是

        

       由③得

由④得

所以,当时,存在点M,使S=

       当时,不存在满足条件的点M.                                        ……11分

       当时,

       由

      

       ,得

解法二:

C上存在点M()使S=的充要条件是

        

       由④得 上式代入③得

       于是,当时,存在点M,使S=

       当时,不存在满足条件的点M.                                        ……11分

       当时,记

       由,所以

                                          ……14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.

(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;

(2)设通过最后三关后,能被录取的人数为,求随机变量的期望

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年江苏百校样本分析)(10分)(矩阵与变换)  给定矩阵  A= =

(1)求A的特征值及对应的特征向量;  

(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年莆田四中一模理) (14分)

由函数确定数列,若函数的反函数 能确定数列,则称数列是数列的“反数列”。

(1)若函数确定数列的反数列为,求的通项公式;

(2)对(1)中,不等式对任意的正整数恒成立,求实数的范围;

(3)设,若数列的反数列为的公共项组成的数列为;求数列项和

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(05年辽宁卷)(12分)

已知函数.设数列满足,数列满足

(Ⅰ)用数学归纳法证明;(Ⅱ)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

(05年湖北卷文)(12分)

设数列的前n项和为Sn=2n2为等比数列,且

   (Ⅰ)求数列的通项公式;

   (Ⅱ)设,求数列的前n项和Tn.

查看答案和解析>>

同步练习册答案