(05年辽宁卷)(14分)
已知椭圆的左、右焦点分别是
、,是椭圆外的动点,满足,
点P是线段与该椭圆的交点,点T在线段上,并且
满足.
(Ⅰ)设为点P的横坐标,证明 ;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△的面积.若存在,求
∠的正切值;若不存在,请说明理由.
解析:(Ⅰ)证法一:设点P的坐标为
由P在椭圆上,得
由,所以 ……3分
证法二:设点P的坐标为记
则
由,得
.
证法三:设点P的坐标为
椭圆的左准线方程为
由椭圆第二定义得,即
由,所以 ……3分
(Ⅱ)解法一:设点T的坐标为
当时,点(,0)和点(-,0)在轨迹上.
当|时,
由,得.
又,所以T为线段F2Q的中点.
在△QF1F2中,,所以有
综上所述,点T的轨迹C的方程是 ……7分
解法二:设点T的坐标为 当时,点(,0)和点(-,0)在轨迹上.
当|时,由,得.
又,所以T为线段F2Q的中点.
设点Q的坐标为(),则
因此 ①
由得 ②
将①代入②,可得
综上所述,点T的轨迹C的方程是 ……7分
|
由③得,
由④得
所以,当时,存在点M,使S=;
当时,不存在满足条件的点M. ……11分
当时,,
由,
,
,得
解法二:
C上存在点M()使S=的充要条件是
|
由④得 上式代入③得
于是,当时,存在点M,使S=;
当时,不存在满足条件的点M. ……11分
当时,记,
由知,所以
……14分
科目:高中数学 来源: 题型:
(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.
(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;
(2)设通过最后三关后,能被录取的人数为,求随机变量的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年莆田四中一模理) (14分)
由函数确定数列,,若函数的反函数 能确定数列,,则称数列是数列的“反数列”。
(1)若函数确定数列的反数列为,求的通项公式;
(2)对(1)中,不等式对任意的正整数恒成立,求实数的范围;
(3)设,若数列的反数列为,与的公共项组成的数列为;求数列前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com