精英家教网 > 高中数学 > 题目详情
判断下列命题是全称命题还是特称命题,并判断其真假.
(1)a>0,且a≠1,则对任意实数x,ax>0;
(2)对任意实数x1,x2,若x1<x2,则tanx1<tanx2
(3)?T0∈R,使|sin(x+T0)|=|sinx|;
(4)?x0∈R,使x\o\al(2,0)+1<0.
分析:根据全称命题和特称命题的定义,全称命题要包含全称量词,特称命题要包含特称量词,我们逐一分析四个命题易得到答案.
解答:解:(1)、(2)是全称命题,(3)、(4)是特称命题.
(1)∵ax>0(a>0,a≠1)恒成立,∴命题(1)是真命题.
(2)存在x1=0,x2=π,x1<x2,但tan0=tanπ,
∴命题(2)是假命题.
(3)y=|sinx|是周期函数,π就是它的一个周期,
∴命题(3)为真命题.
(4)对任意x∈R,x2+1>0,∴命题(4)是假命题.
点评:本题考查的知识点是全称命题和特称命题的定义,命题的真假判断与应用,要判断一个特称命题为真命题,只要举出一个满足条件的例子即可,这是提高本题解答速度和准确度的重要方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、判断下列命题是全称命题还是特称命题,并判断其真假.
(1)对数函数都是单调函数;
(2)至少有一个整数,它既能被2整除,又能被5整除;
(3)?x0∈{x|x∈R},log2x0>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.
(Ⅰ)存在实数x,使得x2+2x+3<0;
(Ⅱ)有些三角形是等边三角形;
(Ⅲ)方程x2-8x-10=0的每一个根都不是奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题是全称命题还是存在性命题,并写出它们的否定:
(1)p:对任意的x∈R,x2+x+1=0都成立;
(2)p:?x∈R,x2+2x+5>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.
(1)末尾数是偶数的数能被4整除;
(2)对任意实数x,都有x2-2x-3<0;
(3)方程x2-5x-6=0有一个根是奇数.

查看答案和解析>>

同步练习册答案