精英家教网 > 高中数学 > 题目详情
10.用弧度表示终边落在如图所示的阴影部分内(不包括边界)的角的集合.

分析 图一中,利用终边相同的角的集合定理可得出分别与角$\frac{π}{3}$,$\frac{5π}{4}$终边相同的角,即可终边落在阴影区域(不包括边界)的角的集合;图二中,终边落在如图所示的阴影部分内(不包括边界)的角分别位于一、三象限,在第一象限内,$\frac{π}{6}$<α<$\frac{π}{2}$,在第二象限,$\frac{7π}{6}$<α<$\frac{3π}{2}$,由此能求出终边落在如图所示的阴影部分内(不包括边界)的角的集合.

解答 解:在第一个图形中,
分别与角$\frac{π}{3}$,$\frac{5π}{4}$终边相同的角为$\frac{π}{3}$+2kπ,-$\frac{3π}{4}$+2kπ(k∈Z).
因此终边落在阴影区域(不包括边界)的角的集合是:
{α|-$\frac{3π}{4}$+2kπ<α<$\frac{π}{3}$+2kπ,k∈Z}.
在第二个图形中,终边落在如图所示的阴影部分内(不包括边界)的角分别位于一、三象限,
在第一象限内,$\frac{π}{6}$<α<$\frac{π}{2}$,在第二象限,$\frac{7π}{6}$<α<$\frac{3π}{2}$,
∴终边落在如图所示的阴影部分内(不包括边界)的角的集合为:
{α|$\frac{π}{6}$+2kπ<α<$\frac{π}{2}$+2kπ,或$\frac{7π}{6}$+2kπ<α<$\frac{3π}{2}$+2kπ,k∈Z}={α|$\frac{π}{6}$+kπ<α<$\frac{π}{2}$+kπ,k∈Z}.

点评 本题考查终边相同的角的集合的求法,是基础题,解题时要认真审题,注意终边相同的角的集合的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知F1,F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,B为椭圆E的上顶点,且$\overrightarrow{B{F}_{1}}$⊥$\overrightarrow{B{F}_{2}}$,若△BF1F2的面积是9,求椭圆的短轴长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.斜率为-$\frac{1}{2}$,且在y轴上的截距为5的直线方程为x+2y-10=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=max{|x+1|,|x-2|},其中max{p,q}表示p,q两者中较大者,则f(x)的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算下列各题:
(1)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$
(2)lg25+lg2×lg50+lg22.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若f($\frac{2}{x}$)=$\frac{1}{3{x}^{2}+1}$,则f(x)=$\frac{{x}^{2}}{12+{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线.已知命题p:向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面;命题q:存在两个非零常数λ,μ,使c=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$.则p是q的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义在R上的偶函数f(x)满足f(4)=f(-2)=0,在区间(-∞,-3)与[-3,0]上分别递增和递减,则不等式xf(x)>0的解集为(  )
A.(-∞,-4)∪(4,+∞)B.(-4,-2)∪(2,4)C.(-∞,-4)∪(-2,0)D.(-∞,-4)∪(-2,0)∪(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.当复数z=$\frac{1}{m+5}+({m^2}+2m-15)i$为实数时,实数m=3.

查看答案和解析>>

同步练习册答案