精英家教网 > 高中数学 > 题目详情

【题目】已知函数 为自然对数的底数).

(Ⅰ)当的最小值

(Ⅱ)若函数恰有两个不同极值点

①求的取值范围

②求证:

【答案】(Ⅰ)见解析;(Ⅱ) ②见解析.

【解析】试题分析:求出,令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间根据单调性可得的最小值;(恰有两个极值点,等价于上恰有两个不同零点时, 恒成立, 上单调递减,不合要求;当时,研究函数的单调性结合零点存在定理可得的取值范围②不妨设,则有: 可得,令原不等式等价于 ,验证函数的最大值小于零即可得结论.

试题解析:(Ⅰ)

所以上单调递减上单调递增

恒有

上单调递增

(Ⅱ)恰有两个极值点

等价于上恰有两个不同零点

恒成立 上单调递减不合要求

上单调递减上单调递增

此时

故当 上各恰有一个零点

即当时函数有两个极值点

另法考查

②不妨设则有 两式相加与相减得

,令

考查函数 恒成立于

上单调递增则恒有

成立

故命题得证

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列 满足: 或1().对任意,都存在,使得.,其中 且两两不相等.

(I)若.写出下列三个数列中所有符合题目条件的数列的序号;

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)记.若,证明:

(Ⅲ)若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为,上、下顶点分别为,点在椭圆上,且异于点,直线与直线 分别交于点面积的最大值为.

1)求椭圆的标准方程;

2)求线段的长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线lyxb (b>0),抛物线Cy22px(p>0),已知点P(22)在抛物线C上,且抛物线C上的点到直线l的距离的最小值为.

(1)求直线l及抛物线C的方程;

(2)过点Q(2,1)的任一直线(不经过点P)与抛物线C交于AB两点,直线AB与直线l相交于点M,记直线PAPBPM的斜率分别为k1k2k3.问:是否存在实数λ,使得k1k2λk3?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线与直线垂直,椭圆经过点

(1)求椭圆的标准方程;

(2)过点作椭圆的两条互相垂直的弦.若弦的中点分别为,证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足:所有项

设集合,将集合中的元素的最大值记为.换句话说,

数列中满足不等式的所有项的项数的最大值我们称数列为数列

伴随数列例如,数列1,3,5的伴随数列为1,1,2,2,3

1若数列的伴随数列为1,1,1,2,2,2,3,请写出数列

2,求数列的伴随数列的前100之和;

(3)若数列的前项和(其中常数),试求数列的伴随数列项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (m,n∈R)在x=1处取得极值2.

(1)求f(x)的解析式;

(2)k为何值时,方程f(x)-k=0只有1个根

(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边, 相切于点,

(1)当长为1分米时,求折卷成的包装盒的容积;

(2)当的长是多少分米时,折卷成的包装盒的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上动点与两个定点 ,且.

(1)求点的轨迹方程,并说明轨迹是什么图形;

(2)记(1)中轨迹为,过点的直线所截得的线段长度为8,求直线的方程.

查看答案和解析>>

同步练习册答案