【题目】已知函数, (为自然对数的底数).
(Ⅰ)当时,求的最小值;
(Ⅱ)若函数恰有两个不同极值点.
①求的取值范围;
②求证: .
【答案】(Ⅰ)见解析;(Ⅱ) ,②见解析.
【解析】试题分析:(Ⅰ)求出,令求得的范围,可得函数增区间, 求得的范围,可得函数的减区间,根据单调性可得的最小值;(Ⅱ)①恰有两个极值点,等价于在上恰有两个不同零点,当时, 在恒成立, 在上单调递减,不合要求;当时,研究函数的单调性结合零点存在定理可得的取值范围,②不妨设,则有: ,可得,令,原不等式等价于, ,验证函数的最大值小于零即可得结论.
试题解析:(Ⅰ) , , ,
所以在上单调递减,在上单调递增,
,
即时,恒有,
故在上单调递增, .
(Ⅱ),要恰有两个极值点,
等价于在上恰有两个不同零点.
,
当时, 在恒成立, 在上单调递减,不合要求;
当时, 在上单调递减,在上单调递增,
而,由,
∴, ,
此时, ,
故当时, 在与上各恰有一个零点,
即当时函数有两个极值点.
另法:考查
②不妨设,则有: ,两式相加与相减得: ,
,而,
,令,
, , ,
考查函数, , 恒成立于,
在上单调递增,则恒有.
即, 成立,
故命题得证.
科目:高中数学 来源: 题型:
【题目】数列: 满足: , 或1().对任意,都存在,使得.,其中 且两两不相等.
(I)若.写出下列三个数列中所有符合题目条件的数列的序号;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)记.若,证明: ;
(Ⅲ)若,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆: 的离心率为,上、下顶点分别为、,点在椭圆上,且异于点、,直线、与直线: 分别交于点、,且面积的最大值为.
(1)求椭圆的标准方程;
(2)求线段的长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线l:y=x+b (b>0),抛物线C:y2=2px(p>0),已知点P(2,2)在抛物线C上,且抛物线C上的点到直线l的距离的最小值为.
(1)求直线l及抛物线C的方程;
(2)过点Q(2,1)的任一直线(不经过点P)与抛物线C交于A,B两点,直线AB与直线l相交于点M,记直线PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在实数λ,使得k1+k2=λk3?若存在,试求出λ的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,上顶点为,直线与直线垂直,椭圆经过点.
(1)求椭圆的标准方程;
(2)过点作椭圆的两条互相垂直的弦.若弦的中点分别为,证明:直线恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列满足:①;②所有项;③ .
设集合,将集合中的元素的最大值记为.换句话说, 是
数列中满足不等式的所有项的项数的最大值.我们称数列为数列的
伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.
(1)若数列的伴随数列为1,1,1,2,2,2,3,请写出数列;
(2)设,求数列的伴随数列的前100之和;
(3)若数列的前项和(其中常数),试求数列的伴随数列前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (m,n∈R)在x=1处取得极值2.
(1)求f(x)的解析式;
(2)k为何值时,方程f(x)-k=0只有1个根
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边, 相切于点, .
(1)当长为1分米时,求折卷成的包装盒的容积;
(2)当的长是多少分米时,折卷成的包装盒的容积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知坐标平面上动点与两个定点, ,且.
(1)求点的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中轨迹为,过点的直线被所截得的线段长度为8,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com