精英家教网 > 高中数学 > 题目详情

过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.

(1);(2).

解析试题分析:(I)根据,设直线方程为,
确定的坐标,由确定得到
再根据点在椭圆上,求得进一步即得所求
(2)由可设,
得到椭圆的方程为

根据动直线与椭圆有且只有一个公共点P
得到,整理得.
确定的坐标
, 
轴上存在一定点,使得,那么
可得,由恒成立,故,得解.
试题解析:(1)∵ ,设直线方程为,
,则,∴,                2分
         3分
,∴=,
整理得        4分
点在椭圆上,∴,∴          5分
,∴                6分
(2)∵可设,
∴椭圆的方程为                           7分
          8分
∵动直线与椭圆有且只有一个公共点P
,即
整理得                         9分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,椭圆经过点,离心率,直线的方程为.

(1)求椭圆的方程;
(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.

(1)若点C的纵坐标为2,求|MN|;
(2)若|AF|2=|AM|·|AN|,求圆C的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我们把离心率为e=的双曲线(a>0,b>0)称为黄金双曲线.如图,是双曲线的实轴顶点,是虚轴的顶点,是左右焦点,在双曲线上且过右焦点,并且轴,给出以下几个说法:

①双曲线x2-=1是黄金双曲线;
②若b2=ac,则该双曲线是黄金双曲线;
③如图,若∠F1B1A2=90°,则该双曲线是黄金双曲线;
④如图,若∠MON=90°,则该双曲线是黄金双曲线.
其中正确的是(  )

A.①②④B.①②③C.②③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为,且||=2,
点(1,)在该椭圆上.
(1)求椭圆C的方程;
(2)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知E(2,2)是抛物线C:y2=2px上一点,经过点(2,0)的直线l与抛物线C交于A,B两点(不同于点E),直线EA,EB分别交直线x=-2于点M,N.
(1)求抛物线方程及其焦点坐标;
(2)已知O为原点,求证:∠MON为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与点M(x,y)的距离为n.
(1)求圆C的圆心轨迹L的方程.
(2)求满足条件m=n的点M的轨迹Q的方程.
(3)在(2)的条件下,试探究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于.若存在,请求出点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆过定点(1,0),且与直线相切.
(1)求动圆圆心的轨迹方程;
(2)设是轨迹上异于原点的两个不同点,直线的倾斜角分别为,①当时,求证直线恒过一定点
②若为定值,直线是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案