精英家教网 > 高中数学 > 题目详情
15.函数y=$\frac{x+2}{x+1}$的值域是(-∞,1)∪(1,+∞).

分析 函数y=$\frac{x+2}{x+1}$=1+$\frac{1}{x+1}$(x≠-1),利用反比例函数的值域即可得出.

解答 解:函数y=$\frac{x+2}{x+1}$=1+$\frac{1}{x+1}$(x≠-1),
∴函数的值域为(-∞,1)∪(1,+∞).
故答案为:(-∞,1)∪(1,+∞).

点评 本题考查了反比例函数类型的函数的值域求法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.点P在边长为1的正方形ABCD内运动,则动点P到定点A的距离小于1的概率为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.有下列五个命题:
①函数f(x)=$\frac{|x|}{|x-2|}$是偶函数;
②函数y=$\sqrt{x-1}$的值域为{y|y≥0};
③已知集合A={-1,3},B={x|ax-1=0,a∈R},若A∪B=A,则a的取值集合为$\left\{{-1,\frac{1}{3}}\right\}$
④关于x的一元二次方程x2+mx+2m+1=0的一个根大于1,一个根小于1,则实数m 的取值范围是$\left\{{m|m<-\frac{2}{3}}\right\}$;
⑤若f(x)的定义域为R,且在(-∞,+∞)上是增函数,a∈R,且a≠$\frac{1}{2}$,则$f(\frac{3}{4})$与f(a2-a+1)的大小关系是$f(\frac{3}{4})<f({a^2}-a+1)$.
你认为正确命题的序号为:②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|(x+3)(6-x)≤0},B={x|log2(x+2)<4}.
(1)求A∩∁RB;
(2)已知C={x|2a<x<a+1}(a∈R),若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={a,b,c,d},B={e,f,g,h},求以A为定义域,B为值域的不同的函数个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x>1,则函数y=$\frac{{x}^{2}-x+1}{x-1}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设P是不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+3y≤1}\end{array}\right.$表示的平面区域内的任意一点,向量$\overrightarrow{m}$=(-1,1),$\overrightarrow{n}$=(2,-1),若$\overrightarrow{OP}=λ\overrightarrow m+μ\overrightarrow n$,则$\frac{μ}{λ+1}$的取值范围(  )
A.[-$\frac{1}{2}$,2]B.[0,1]C.[$\frac{1}{2}$,1]D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知A(m,-m+3),B(2,m-1),C(-1,4),直线AC的斜率等于直线BC的斜率的3倍,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PD⊥底面ABCD,AB=2AD,∠ADB=90°,
(1)证明PA⊥BD;
(2)设PD=AD=1,求三棱锥D-PBC的体积.

查看答案和解析>>

同步练习册答案