精英家教网 > 高中数学 > 题目详情
4、设a1,a2,a3,a4,a5构成等比数列,若a2a5<0,则下列各式正确的是(  )
分析:根据等比数列的通项公式结合已知条件可得q<0,逐一分析各个选项,找出正确答案即可.
解答:解:设公比为q,由等比数列的通项公式可得a2a5=a1q•a1q4=a12•q5<0,
∴q<0;
A、a1a3a4a5=a1•a1q2•a1q3•a1q4=a14q9<0,故错误;
B、a1a2a4a5=a1•a1q•a1q3•a1q4=a14q8>0,故错误;
C、a1a2a3a5=a1•a1q•a1q2•a1q4=a14q7<0,故错误;
D、a1a2a3a4=a1•a1q•a1q2•a1q3=a14q6>0,故正确;
故选D.
点评:本题考查了等比数列的通项公式和有理数指数幂的运算性质,比较简单.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a1,a2,a3成等比数列,其公比为2,则
a2a1+a3
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设A1,A2,A3,A4 是平面上给定的4个不同点,则使
MA1
+
MA2
+
MA3
+
MA4
=
0
 成立的点M 的个数为(  )
A、0B、1C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设A1,A2,A3,A4,A5是平面上给定的5个不同点,则使
MA1
+
MA2
+
MA3
+
MA4
+
MA5
=
0
成立的点M的个数为(  )
A、0B、1C、5D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

设A1,A2,A3,A4,A5是空间中给定的5个不同的点,则使
MA1
+
MA2
+
MA3
+
MA4
+
MA5
=
0
成立的点M的个数为
1
1
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.(矩阵与变换)
已知矩阵
12
2a
的属于特征值b的一个特征向量为
1
1
,求实数a、b的值.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,已知点A(1,-2)在曲线
x=2pt2
y=2pt
(t为参数,p为正常数),求p的值.
D.(不等式选讲)
设a1,a2,a3均为正数,且a1+a2+a3=1,求证:
1
a1
+
1
a2
+
1
a3
≥9

查看答案和解析>>

同步练习册答案