【题目】某个命题与自然数n有关,如果当()时该命题成立,则可得时该命题也成立,若已知时命题不成立,则下列说法正确的是______(填序号)
(1)时,该命题不成立;
(2)时,该命题不成立;
(3)时,该命题可能成立;
(4)时,该命题可能成立也可能不成立,但若时命题成立,则对任意,该命题都成立.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆的参数方程为(为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.
(1)求圆的极坐标方程;
(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线,,所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】折纸与数学有着千丝万缕的联系,吸引了人们的广泛兴趣.因纸的长宽比称为白银分割比例,故纸有一个白银矩形的美称.现有一张如图1所示的纸,.
分别为的中点,将其按折痕折起(如图2),使得四点重合,重合后的点记为,折得到一个如图3所示的三棱锥.记为的中点,在中,为边上的高.
(1)求证:平面;
(2)若分别是棱上的动点,且.当三棱锥的体积最大时,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)已知直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知矩形所在平面与半圆弧所在平面垂直,是半圆弧上异于,的点.
(1)证明:平面平面;
(2)若,,当三棱锥的体积最大且二面角的平面角的大小为时,试确定的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,且acos C+asin C-b-c=0.
(1)求A;
(2)若AD为BC边上的中线,cos B=,AD=,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com