精英家教网 > 高中数学 > 题目详情

【题目】双曲线 =1(a>1,b>0)的焦点距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和 .求双曲线的离心率e的取值范围.

【答案】解:直线l的方程为 ,即bx+ay﹣ab=0.

由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离

同理得到点(﹣1,0)到直线l的距离

,即

于是得 ,即4e4﹣25e2+25≤0.解不等式,得

由于e>1>0,

所以e的取值范围是


【解析】由已知知直线l的方程为bx+ay﹣ab=0。点(1,0)到直线l的距离 d 1,点(﹣1,0)到直线l的距离 d 2可求出。=c即可求出e的范围。
【考点精析】认真审题,首先需要了解点到直线的距离公式(点到直线的距离为:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若向量 的起点与终点M、A、B、C互不重合且无三点共线,且满足下列关系(O是空间任一点),则能使向量 成为空间一组基底的关系是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了纪念“中国红军长征90周年”,增强学生对“长征精神”的深刻理解,在全校组织了一次有关“长征”的知识竞赛,经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得20分,答错得0分.假设甲队中每人答对的概率均为 ,乙队中3人答对的概率分别为 ,且各人回答正确与否相互之间没有影响,用 表示乙队的总得分.
(1)求 的分布列和均值;
(2)求甲、乙两队总得分之和等于40分且甲队获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)求不等式 的解集;
(2)若关于 的不等式 的解集为 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数据是上海普通职工n个人的年收入,设n个数据的中位数为x,平均数为y,方差为z,如果再加上世界首富的年收入 , 则这n+1个数据中,下列说法正确的是 ( )
A.年收入平均数大大增加,中位数一定变大,方差可能不变
B.年收入平均数大大增加,中位数可能不变,方差变大
C.年收入平均数大大增加,中位数可能不变,方差也不变
D.年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:

男公务员

女公务员

生二胎

40

20

不生二胎

20

20


(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为X,求随机变量X的分布列,数学期望.
附:K2=

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且a3=3,S7=28,在等比数列{bn}中,b3=4,b4=8.
(1)求an及bn
(2)设数列{anbn}的前n项和为Tn , 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级50名学生的考试分数x分布在区间[50,100)内,设分数x的分布频率是f(x)且f(x)= ,考试成绩采用“5分制”,规定:考试分数在[50,60)内的成绩记为1分,考试分数在[60,70)内的成绩记为2分,考试分数在[70,80)内的成绩记为3分,考试分数在[80,90)内的成绩记为4分,考试分数在[90,100)内的成绩记为5分.用分层抽样的方法,现在从成绩在1分,2分及3分的人中用分层抽样随机抽出6人,再从这6人中抽出3人,记这3人的成绩之和为ξ(将频率视为概率).
(1)求b的值,并估计班级的考试平均分数;
(2)求P(ξ=7);
(3)求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案