精英家教网 > 高中数学 > 题目详情
已知非零向量
a
b
满足|
b
|=1,且
b
b
+
a
的夹角为30°,则|
a
|的取值范围是(  )
分析:|
a
|
|
b
|
|
b
+
a
|
看成三角形的三条边,利用余弦定理求出|
a
|2
,再利用二次函数的性质求出|
a
|的取值范围.
解答:解:∵非零向量
a
b
满足|
b
|=1,且
b
b
+
a
的夹角为30°,
|
a
|2
=|
b
|2
+|
b
+
a
|2
-2|
b
|•|
b
+
a
|
cos30°
=|
b
+
a
|2-
3
|
b
+
a
|+1

=(|
b
+
a
|-
3
2
2+
1
4
1
4

|
a
|
1
2

故选C.
点评:本题考查向量的模的取值范围,解题时要注意余弦定理、二次函数性质等知识点的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知非零向量
a
b
满足|
a
+
b
|=|
a
-
b
|
,求证:
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
满足|
a
+
b
|=|
b
|

①若
a
b
共线,则
a
=-2
b

②若
a
b
不共线,则以|
a
|、|
a
+2
b
|、2|
b
|
为边长的三角形为直角三角形;
2|
b
|>|
a
+2
b
|
; ④2|
b
|<|
a
+2
b
|

其中正确的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•鹰潭一模)已知非零向量
a
b
满足|
a
+
b
|=|
a
-
b
|=
2
3
3
|
a
|,则
a
+
b
a
-
b
的夹角为
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州模拟)已知非零向量
a
b
满足|
a
|=1,|
a
-
b
|=
3
a
b
的夹角为120°,则|
b
|=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•珠海二模)已知非零向量
a
b
满足
a
b
,则函数f(x)=(
a
x+
b
)2(x∈R)
是(  )

查看答案和解析>>

同步练习册答案