精英家教网 > 高中数学 > 题目详情
(2012•重庆)设A,B为直线y=x与圆x2+y2=1的两个交点,则|AB|=(  )
分析:由圆的方程找出圆心坐标和半径r,根据圆心在直线y=x上,得到AB为圆的直径,根据直径等于半径的2倍,可得出|AB|的长.
解答:解:由圆x2+y2=1,得到圆心坐标为(0,0),半径r=1,
∵圆心(0,0)在直线y=x上,
∴弦AB为圆O的直径,
则|AB|=2r=2.
故选D
点评:此题考查了直线与圆相交的性质,以及圆的标准方程,当直线与圆相交时,常常根据垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•重庆)设f(x)=alnx+
1
2x
+
3
2
x+1
,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(Ⅰ) 求a的值;
(Ⅱ) 求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设平面点集A={(x,y)|(y-x)(y-
1
x
)≥0},B={(x,y)|(x-1)2+(y-1)2≤1}
,则A∩B所表示的平面图形的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设函数f(x)=Asin(ωx+φ)其中A>0,ω>0,-π<φ≤π)在x=
π
6
处取得最大值2,其图象与x轴的相邻两个交点的距离为
π
2

(Ⅰ)求f(x)的解析式;
(Ⅱ)求函数g(x)=
6cos4x-sin2x-1
f(x+
π
6
)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设f(x)=4cos(ωx-
π
6
)sinωx-cos(2ωx+π),其中ω>0.
(Ⅰ)求函数y=f(x)的值域
(Ⅱ)若f(x)在区间[-
2
π
2
]
上为增函数,求ω的最大值.

查看答案和解析>>

同步练习册答案