A. | $\frac{2}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{2}{7}$ | D. | -$\frac{1}{7}$ |
分析 由已知向量的坐标以及向量的数量积得到关于α的三角函数的等式,先求sinα,再求解tanα.然后利用两角和的正切函数求解即可.
解答 解:∵$\overrightarrow{a}$=(1,sinα),$\overrightarrow{b}$=(cos2α,2sinα-1),α∈($\frac{π}{2}$,π).
若$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{5}$,
∴$\frac{1}{5}$=cos2α-sinα+2sin2α=1-sinα;
解得sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$
∴tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$.
tan(α+$\frac{π}{4}$)=$\frac{-\frac{4}{3}+1}{1+\frac{4}{3}}$=$-\frac{1}{7}$.
故选:D.
点评 本题考查了向量的数量积的坐标运算以及三角函数的变形,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{7}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{2}$ | B. | -1 | C. | -5 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | C${\;}_{5}^{2}$A${\;}_{4}^{4}$ | B. | C${\;}_{5}^{2}$64 | C. | A${\;}_{5}^{2}$A${\;}_{4}^{4}$ | D. | A${\;}_{5}^{2}$64 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com