精英家教网 > 高中数学 > 题目详情

已知函数,函数的图像在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点,(),证明:

(1) ;(2);(3)证明过程详见解析.

解析试题分析:本题考查函数与导数及运用导数求切线方程、单调区间、最值等数学知识和方法,突出考查综合运用数学知识和方法分析问题解决问题的能力.第一问,对求导,将代入得到切线的斜率,由已知得,即,所以;第二问,利用第一问的结论得到的解析式,对求导,判断函数的单调性和极值;第三问,先用分析法得出与结论等价的式子,即,先证不等式的右边,构造函数,通过求导数判断函数的单调性,求出最大值,所以,即,再证不等式的左边,同样构造函数,通过求导,求出最小值,即,即,综合上述两部分的证明可得.
试题解析:(1)依题意得,则
由函数的图象在点处的切线平行于轴得:
 .
(2)由(1)得 
∵函数的定义域为,令
函数上单调递增,在单调递减;在上单调递增.故函数的极小值为
(3)证法一:依题意得
要证,即证
,即证 
),即证
)则
在(1,+)上单调递减,
 即                 ①
)则
在(1,+)上单调递增,
=0,即)                 ②
综①②得),即
【证法二:依题意得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义函数阶函数.
(1)求一阶函数的单调区间;
(2)讨论方程的解的个数;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中,曲线在点处的切线垂直于轴.
(1)求的值;
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数R,
(1)求函数f(x)的值域;
(2)记函数,若的最小值与无关,求的取值范围;
(3)若,直接写出(不需给出演算步骤)关于的方程的解集

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求函数的单调递减区间;
(II)若上恒成立,求实数的取值范围;
(III)过点作函数图像的切线,求切线方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)若,求的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数的取值范围;
(3)是否存在最小的正整数,使得当时,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且在时函数取得极值.
(1)求的单调增区间;
(2)若
(Ⅰ)证明:当时,的图象恒在的上方;
(Ⅱ)证明不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)若,求的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数的取值范围;
(3)是否存在最小的正整数,使得当时,不等式恒成立.

查看答案和解析>>

同步练习册答案