已知函数,,函数的图像在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点,(),证明:.
(1) ;(2);(3)证明过程详见解析.
解析试题分析:本题考查函数与导数及运用导数求切线方程、单调区间、最值等数学知识和方法,突出考查综合运用数学知识和方法分析问题解决问题的能力.第一问,对求导,将代入得到切线的斜率,由已知得,即,所以;第二问,利用第一问的结论得到的解析式,对求导,判断函数的单调性和极值;第三问,先用分析法得出与结论等价的式子,即,先证不等式的右边,构造函数,通过求导数判断函数的单调性,求出最大值,所以,即,再证不等式的左边,同样构造函数,通过求导,求出最小值,即,即,综合上述两部分的证明可得.
试题解析:(1)依题意得,则
由函数的图象在点处的切线平行于轴得:
∴ .
(2)由(1)得
∵函数的定义域为,令得或
函数在上单调递增,在单调递减;在上单调递增.故函数的极小值为
(3)证法一:依题意得,
要证,即证
因,即证
令(),即证()
令()则
∴在(1,+)上单调递减,
∴ 即, ①
令()则
∴在(1,+)上单调递增,
∴=0,即() ②
综①②得(),即.
【证法二:依题意得,
令则
由得
科目:高中数学 来源: 题型:解答题
已知函数R,,
(1)求函数f(x)的值域;
(2)记函数,若的最小值与无关,求的取值范围;
(3)若,直接写出(不需给出演算步骤)关于的方程的解集
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,其中.
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,其中.
(1)若,求在的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数的取值范围;
(3)是否存在最小的正整数,使得当时,不等式恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,其中.
(1)若,求在的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数的取值范围;
(3)是否存在最小的正整数,使得当时,不等式恒成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com