精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若存在,使得关于的方程有三个不等实根,则实数的取值范围为(

A.B.

C.D.

【答案】B

【解析】

写成分段函数的形式,然后根据与对称轴关系作分类讨论,再根据方程有解出参数的取值范围.

因为,且在处两段函数值相同为

即为

的对称轴为的对称轴为

时(如图所示),上单调递增,上单调递增,

所以上单调递增,此时至多一解,不符合题意;

时(如图所示),上单调递增,

上单调递减,在上单调递增,

有三解,则,所以,所以

因为存在满足条件,所以

又因为上单调递增,所以,所以

时(如图所示),上单调递增,在上单调递减,

上单调递增,

有三解,则,所以,所以

因为存在满足条件,所以

又因为上单调递增,所以,所以

综上可知:.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四面体有五条棱长为3,且外接球半径为2.动点P在四面体的内部或表面,P到四个面的距离之和记为s.已知动点P两处时,s分别取得最小值和最大值,则线段长度的最小值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国历法中将一年分为春、夏、秋、冬四个季节,每个季节有六个节气,如夏季包含立夏、小满、芒种、夏至、小暑以及大暑.某美术学院甲、乙、丙、丁四位同学接到绘制二十四节气的彩绘任务,现四位同学抽签确定各自完成哪个季节中的六幅彩绘,在制签及抽签公平的前提下,甲没有抽到绘制春季六幅彩绘任务且乙没有抽到绘制夏季六幅彩绘任务的概率为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在,使,则称是函数的一对“雷点”.已知,若函数恰有一个“雷点”,则实数的取值范围为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】向量集合,对于任意,以及任意,都有,则称为“类集”,现有四个命题:

①若为“类集”,则集合也是“类集”;

②若,都是“类集”,则集合也是“类集”;

③若都是“类集”,则也是“类集”;

④若都是“类集”,且交集非空,则也是“类集”.

其中正确的命题有________(填所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人耳的听力情况可以用电子测听器检测,正常人听力的等级为(分贝),并规定测试值在区间为非常优秀,测试值在区间为优秀,某班名同学都进行了听力测试,所得测试值制成频率分布直方图:

)现从听力等级为的同学中任意抽取出4人,记听力非常优秀的同学人数为,求的分布列与数学期望:

)现选出一名同学参加另一项测试,测试规则如下:四个音叉的发生情况不同,由强到弱的次序分别为1234.测试前将音叉随机排列,被测试的同学依次听完后给四个音叉按发音的强弱标出一组序号(其中1234的一个排列),记,可用描述两次排序的偏离程度,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,.

1)求证:平面平面ABC

2M是线段AC上一点,若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,底面ABCHPC的中点,MAH的中点.

1)求PM与平面AHB成角的正弦值;

2)在线段PB上是否存在点N使得平面ABC.若存在,请说明点N的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面

(2) 求二面角的大小.

查看答案和解析>>

同步练习册答案