【题目】已知函数.
(1)若对任意的,都有恒成立,求的最小值;
(2)设,若为曲线上的两个不同的点,满足,且,使得曲线在点处的切线与直线平行,求证:.
【答案】(1)1;(2)证明见解析
【解析】
(1) 对任意的x∈[0,+∞),都有f(x)≥g(x)恒成立aln(x+1)﹣x.
令h(x)=aln(x+1)﹣x(x≥0).利用导数的运算法则可得h′(x).
分类讨论:当a≥1时,当a<1时,只要验证最小值是否大于0即可得出.
(2)p(x)=f(x﹣1)=alnx,kAB.利用导数的运算法则可得.由于曲线y=f(x)在x3处的切线与直线AB平行,可得.利用p′(x)在定义域内单调性质要证:x3.即证明.即证明.变形可得,令,则t>1.要证明的不等式等价于(t+1)lnt>2(t﹣1).构造函数q(t)=(t+1)lnt﹣2(t﹣1),(t>1).利用导数研究其单调性即可证明.
(1)恒成立恒成立,
令,
则,
(i)若,则恒成立,
函数在为单调递增函数,
恒成立,又,
符合条件.
(ii)若,由,可得,
解得和(舍去),
当时,;
当时,;
∴,这与h(x)≥0相矛盾,应舍去.
综上,,的最小值为1.
(2),,
又,,
,
由,易知其在定义域内为单调递减函数,
欲证证明,
即,
变形可得:,
令,原不等式等价于,
等价于,
构造函数,
则,
令,
当时,,
在上为单调递增函数,,
在上为单调递增函数,
在上恒成立,
成立,得证.
科目:高中数学 来源: 题型:
【题目】下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是( )
A.私人类电动汽车充电桩保有量增长率最高的年份是2018年
B.公共类电动汽车充电桩保有量的中位数是25.7万台
C.公共类电动汽车充电桩保有量的平均数为23.12万台
D.从2017年开始,我国私人类电动汽车充电桩占比均超过50%
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥VABCD中,底面ABCD是矩形,VD⊥平面ABCD,过AD的平面分别与VB,VC交于点M,N.
(1) 求证:BC⊥平面VCD;
(2) 求证:AD∥MN.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年上半年我国多个省市暴发了“非洲猪瘟”疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就“一天中一头猪的平均成本与生猪存栏数量之间的关系”进行研究.现相关数据统计如下表:
生猪存栏数量(千头) | 2 | 3 | 4 | 5 | 8 |
头猪每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究员甲根据以上数据认为与具有线性回归关系,请帮他求出关于的线.性回归方程(保留小数点后两位有效数字)
(2)研究员乙根据以上数据得出与的回归模型:.为了评价两种模型的拟合效果,请完成以下任务:
①完成下表(计算结果精确到0.01元)(备注:称为相应于点的残差);
生猪存栏数量(千头) | 2 | 3 | 4 | 5 | 8 | |
头猪每天平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估计值 | |||||
残差 | ||||||
模型乙 | 估计值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
残差 | 0 | 0 | 0 | 0.14 | 0.1 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较的大小,判断哪个模型拟合效果更好.
(3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)
参考公式:.
参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,右顶点为,右焦点为,为坐标原点,,椭圆过点.
(1)求椭圆的方程;
(2)若过点的直线与椭圆交于不同的两点(在之间),求与面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查中学生每天玩游戏的时间是否与性别有关,随机抽取了男、女学生各50人进行调查,根据其日均玩游戏的时间绘制了如下的频率分布直方图.
(1)求所调查学生日均玩游戏时间在分钟的人数;
(2)将日均玩游戏时间不低于60分钟的学生称为“游戏迷”,已知“游戏迷”中女生有6人;
①根据已知条件,完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别关系;
非游戏迷 | 游戏迷 | 合计 | |
男 | |||
女 | |||
合计 |
②在所抽取的“游戏迷”中按照分层抽样的方法抽取10人,再在这10人中任取9人进行心理干预,求这9人中男生全被抽中的概率.
附:(其中为样本容量).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(其中是常数,且),曲线在处的切线方程为.
(1)求的值;
(2)若存在(其中是自然对数的底),使得成立,求的取值范围;
(3)设,若对任意,均存在,使得方程有三个不同的实数解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是( )
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
A. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动有关
B. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动无关
C. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动有关
D. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动无关
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com