精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若对任意的,都有恒成立,求的最小值;

2)设,若为曲线上的两个不同的点,满足,且,使得曲线在点处的切线与直线平行,求证:.

【答案】(1)1;(2)证明见解析

【解析】

(1) 对任意的x[0+∞),都有fxgx)恒成立alnx+1)﹣x

hx)=alnx+1)﹣xx≥0).利用导数的运算法则可得hx

分类讨论:当a≥1时,当a1时,只要验证最小值是否大于0即可得出.

(2)px)=fx1)=alnxkAB.利用导数的运算法则可得.由于曲线yfx)在x3处的切线与直线AB平行,可得.利用px)在定义域内单调性质要证:x3.即证明.即证明.变形可得,令,则t1.要证明的不等式等价于t+1lnt2t1).构造函数qt)=(t+1lnt2t1),(t1).利用导数研究其单调性即可证明.

1恒成立恒成立,

i)若,则恒成立,

函数为单调递增函数,

恒成立,又

符合条件.

ii)若,由,可得

解得(舍去),

时,

时,

,这与hx≥0相矛盾,应舍去.

综上,的最小值为1.

2

,易知其在定义域内为单调递减函数,

欲证证明

变形可得:

,原不等式等价于

等价于

构造函数

时,

上为单调递增函数,

上为单调递增函数,

上恒成立,

成立,得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是(

A.私人类电动汽车充电桩保有量增长率最高的年份是2018

B.公共类电动汽车充电桩保有量的中位数是25.7万台

C.公共类电动汽车充电桩保有量的平均数为23.12万台

D.2017年开始,我国私人类电动汽车充电桩占比均超过50%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若在其定义域上单调递减,求的取值范围;

2)证明:在区间恰有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥VABCD中,底面ABCD是矩形,VD⊥平面ABCD,过AD的平面分别与VBVC交于点MN.

(1) 求证:BC⊥平面VCD

(2) 求证:ADMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年上半年我国多个省市暴发了非洲猪瘟疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就一天中一头猪的平均成本与生猪存栏数量之间的关系进行研究.现相关数据统计如下表:

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

1)研究员甲根据以上数据认为具有线性回归关系,请帮他求出关于的线.性回归方程(保留小数点后两位有效数字)

2)研究员乙根据以上数据得出的回归模型:.为了评价两种模型的拟合效果,请完成以下任务:

①完成下表(计算结果精确到0.01元)(备注:称为相应于点的残差);

生猪存栏数量(千头)

2

3

4

5

8

头猪每天平均成本(元)

3.2

2.4

2

1.9

1.5

模型甲

估计值

残差

模型乙

估计值

3.2

2.4

2

1.76

1.4

残差

0

0

0

0.14

0.1

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)

参考公式:.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,右顶点为,右焦点为为坐标原点,,椭圆过点

1)求椭圆的方程;

2)若过点的直线与椭圆交于不同的两点之间),求面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查中学生每天玩游戏的时间是否与性别有关,随机抽取了男、女学生各50人进行调查,根据其日均玩游戏的时间绘制了如下的频率分布直方图.

1)求所调查学生日均玩游戏时间在分钟的人数;

2)将日均玩游戏时间不低于60分钟的学生称为“游戏迷”,已知“游戏迷”中女生有6人;

①根据已知条件,完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别关系;

非游戏迷

游戏迷

合计

合计

②在所抽取的“游戏迷”中按照分层抽样的方法抽取10人,再在这10人中任取9人进行心理干预,求这9人中男生全被抽中的概率.

附:(其中为样本容量).

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是常数,且),曲线处的切线方程为.

1)求的值;

2)若存在(其中是自然对数的底),使得成立,求的取值范围;

3)设,若对任意,均存在,使得方程有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是( )

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

A. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动有关

B. 在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动无关

C. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动有关

D. 在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动无关

查看答案和解析>>

同步练习册答案