【题目】某工厂生产的产品的直径均位于区间内(单位: ).若生产一件产品的直径位于区间内该厂可获利分别为10,30,20,10(单位:元),现从该厂生产的产品中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.
(1)求的值,并估计该厂生产一件产品的平均利润;
(2)现用分层抽样法从直径位于区间内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间内的槪率.
【答案】(1), 元.(2).
【解析】试题分析:(1)利用频率分布直方图中各矩形的面积和为1,可以得到.再计算出各组内直径的频数,就能计算出平均利润.(2)中的问题是一个古典概型,它的基本事件的总数为,而至多有一件产品的直径位于区间的事件的总数是7,从而所求概率为.
解析:
(1)由频率分布直方图得,所以,直径位于区间的频数为,位于区间的频数为,位于区间的频数为,位于区间的频数为,∴生产一件 产品的平均利润为(元).
(2)由频率分布直方图得:直径位于区间和的频率之比为,∴应从直径位于区间的产品中抽取件产品,记为,从直径位于区间的产品中抽取件产品,记为,从中随机抽取两件,所有可能的取法有共种,∴两件产品中至多有一件产品的直径位于区间内的取法有种.∴所求概率为.
科目:高中数学 来源: 题型:
【题目】从一批柚子中,随机抽取100个,获得其重量(单位:克)数据按照区间,,,进行分组,得到概率分布直方图,如图所示.
(1)根据频率分布直方图计算抽取的100个柚子的重量众数的估计值.
(2)用分层抽样的方法从重量在和的柚子中共抽取5个,其中重量在的有几个?
(3)在(2)中抽出的5个柚子中,任取2人,求重量在的柚子最多有1个的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足4nSn=(n+1)2an(n∈N*).a1=1
(Ⅰ)求an;
(Ⅱ)设bn= ,数列{bn}的前n项和为Tn , 求证:Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由顶点B沿棱柱侧面(经过棱AA1)到达顶点C1,与AA1的交点记为M.求:
(1)三棱柱侧面展开图的对角线长;
(2)从B经M到C1的最短路线长及此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左、右焦点为, ,右顶点为,上顶点为,若, 与轴垂直,且.
(1)求椭圆的方程;
(2)过点且不垂直与坐标轴的直线与椭圆交于, 两点,已知点,当时,求满足的直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx,g(x)= ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)﹣g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1 , C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率为,已知但在椭圆上.
(1)求椭圆的方程;
(2)过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点,使得成立?如果存在,求出的取值范围;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设斜率为2的直线l,过双曲线的右焦 点,且与双曲线的左、右两支分别相交,则双曲线离心率,e的取值范围是 ( )
A. e> B. e> C. 1<e< D. 1<e<
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com