【题目】已知抛物线的焦点为,过点的直线与抛物线交于,两点,线段的垂直平分线交轴于点,若,则点的横坐标为( )
A. 5 B. 4 C. 3 D. 2
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,过点垂直于轴的直线与抛物线相交于两点,抛物线在两点处的切线及直线所围成的三角形面积为.
(1)求抛物线的方程;
(2)设是抛物线上异于原点的两个动点,且满足,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对任意实数都有函数的图象与直线相切,则称函数为“恒切函数”,设函数,其中.
(1)讨论函数的单调性;
(2)已知函数为“恒切函数”,
①求实数的取值范围;
②当取最大值时,若函数也为“恒切函数”,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,通过分层抽样获得部分员工每天睡眼的时间,数据如下表(单位:小时)
甲部门 | 6 | 7 | 8 | |||
乙部门 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
丙部门 | 5 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求该单位乙部门的员工人数?
(2)若将每天睡眠时间不少于7小时视为睡眠充足,现从该单位任取1人,估计拍到的此人为睡眠充足者的概率;
(3)再从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A,乙部门选出的员工记为B,假设所有员工睡眠的时间相互独立,求A的睡眠时间不少于B的睡眼时间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用分别表示的三个内角所对边的边长,表示的外接圆半径.
(1),求的长;
(2)在中,若是钝角,求证:;
(3)给定三个正实数,其中,问满足怎样的关系时,以为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情况下,用表示.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:
①函数的图象和直线的公共点个数是,则的值可能是;
②若函数定义域为且满足,则它的图象关于轴对称;
③函数的值域为;
④若函数在上有零点,则实数的取值范围是.
其中正确的序号是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】宁德市某汽车销售中心为了了解市民购买中档轿车的意向,在市内随机抽取了100名市民为样本进行调查,他们月收入(单位:千元)的频数分布及有意向购买中档轿车人数如下表:
月收入 | [3,4) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9) |
频数 | 6 | 24 | 30 | 20 | 15 | 5 |
有意向购买中档轿车人数 | 2 | 12 | 26 | 11 | 7 | 2 |
将月收入不低于6千元的人群称为“中等收入族”,月收入低于6千元的人群称为“非中等收入族”.
(Ⅰ)在样本中从月收入在[3,4)的市民中随机抽取3名,求至少有1名市民“有意向购买中档轿车”的概率.
(Ⅱ)根据已知条件完善下面的2×2列联表,并判断有多大的把握认为有意向购买中档轿车与收入高低有关?
非中等收入族 | 中等收入族 | 总计 | |||||
有意向购买中档轿车人数 | 40 | ||||||
无意向购买中档轿车人数 | 20 | ||||||
总计 | 100 | ||||||
0.10 | 0.05 | 0.010 | 0.005 | ||||
2.706 | 3.841 | 6.635 | 7.879 | ||||
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com