【题目】已知函数,.
(1)当时,求在处的切线方程;
(2)讨论的单调性;
(3)若有两个零点,求的取值范围.
【答案】(1)(2)答案不唯一,具体见解析(3)
【解析】
(1)先求出,再写出切线方程;(2)先求出,再通过对分类讨论的单调性;(3)对分类讨论,结合函数的图象求出的取值范围.
(1)当时,,所以,,
所以在处的切线方程为.
(2)
①时,,所以,得;,得,
所以在单调递减,在单调递增:
②时,,解得或
当时,恒成立,所以在单调递增;
当,则,故当时,;
时,,所以在单调递增,在单调递减.
当,则,故当时,;
时,,所以在单调递增,在单调递减.
(3)①设,由(2)知,在单调递减,在单调递增.
又,,所以在有一解:取且,
则,所以在有一解,
所以有两个零点;
②设,,只有一个零点;
③设,若,
由(2)知,在单调递增,又当时,,
故不存在两个零点;
若,由(2)知,在单调递增,在单调递减,又当时,,
故不存在两个零点;
科目:高中数学 来源: 题型:
【题目】“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样,为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷2000个点,己知恰有800个点落在阴影部分,据此可估计阴影部分的面积是
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,(其中是常数).
(Ⅰ)求过点与曲线相切的直线方程;
(Ⅱ)是否存在的实数,使得只有唯一的正数,当时不等式恒成立,若这样的实数存在,试求,的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图所示,记椭圆的左、右顶点分别为、,当动点在定直线上运动时,直线分别交椭圆于两点、,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为4,直线被椭圆截得的线段长为.
(1)求椭圆的标准方程;
(2)过椭圆的右顶点作互相垂直的两条直线分别交椭圆于两点(点不同于椭圆的右顶点),证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com