精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=|2x1|a

1)当a1时,解不等式fx)>x+1

2)若存在实数x,使得fxfx+1),求实数a的取值范围.

【答案】(1){x|x3x}.(2)(﹣2+∞).

【解析】

(1)两种情况求解即可.

(2)代入到不等式,再根据能成立问题,分的不同取值去绝对值,参变分离求函数最值即可.

解(1)当a1时,由fx)>x,得|2x1|1x+1

x时,2x11x+1,解得x3

x时,12x1x+1,解得x.综上可知,不等式fx)>x+1的解集为 {x|x3x}

2)因为,..

,

则存在实数,使得成立等价于.

因为 ,故当,

.即实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若二次函数g(x)ax2bxc(a≠0)满足g(x1)2xg(x),且g(0)1.

1)求g(x)的解析式;

2)若在区间[1,1]上,不等式g(x)-t>2x恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过点的动直线交抛物线于两点

(1)当恰为的中点时,求直线的方程;

(2)抛物线上是否存在一个定点,使得以弦为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若的定义域为,判断的单调性,并加以说明;

2)当时,是否存在,使得在区间上的值域为,若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)求函数的单调区间;

2)若函数有两个零点().

i)求的取值范围;

ii)求证:随着的增大而增大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,分别为的中点,.

(1)求证:平面平面

(2)设,若平面与平面所成锐二面角,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,前项和满足;数列是等比数列,前项和为.

1)求数列的通项公式;

2)已知等比数列满足,求数列项和为

3)若,且等比数列的公比,若存在,使得,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,恒有成立,求实数的取值范围;

(2)若函数有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线与曲线两交点所在直线的极坐标方程;

(2)若直线的极坐标方程为,直线轴的交点为,与曲线相交于两点,求的值.

查看答案和解析>>

同步练习册答案