精英家教网 > 高中数学 > 题目详情

已知a1,a2,a3,a4,是非零实数,则“a1a4=a2a3”是“a1,a2,a3,a4,成等比数列”的


  1. A.
    充分非必要条件
  2. B.
    必要非充分条件
  3. C.
    充分且必要条件
  4. D.
    既不充分又不必要条件
B
分析:若a1,a2,a3,a4,成等比数列,利用等比数列的性质得到a1a4=a2a3;但当a1a4=a2a3时,举反例说明a1,a2,a3,a4不一定成等比数列,进而得到“a1a4=a2a3”是“a1,a2,a3,a4,成等比数列”必要非充分条件.
解答:先证必要性:若a1,a2,a3,a4,成等比数列,
∴a1a4=a2a3
又a1=1,a4=2,a2=-1,a3=-2,满足a1a4=a2a3
但1,2,-1,-2不成等比数列,
则“a1a4=a2a3”是“a1,a2,a3,a4,成等比数列”必要非充分条件.
故选B
点评:此题考查了等比数列的性质,以及必要条件、充分条件与充要条件的判断,熟练掌握等比数列的性质是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a1>a2>a3>0,则使得(1-aix)2<1(i=1,2,3)都成立的x取值范围是(  )
A、(0,
1
a1
)
B、(0,
2
a1
)
C、(0,
1
a3
)
D、(0,
2
a3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1,a2,a3,…,a30是首项为1,公比为2的等比数列.对于满足0<k<30的整数k,数列b1,b2,b3,…,b30bn=
an+k,1≤n≤30-k
an+k-30,30-k<n≤30
确定.记C=a1b1+a2b2+…+a30b30
(Ⅰ)当k=1时,求C的值;
(Ⅱ)求C最小时k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

6、已知a1,a2,a3为一等差数列,b1,b2,b3为一等比数列,
且这6个数都为实数,则下面四个结论:
①a1<a2与a2>a3可能同时成立;
②b1<b2与b2>b3可能同时成立;
③若a1+a2<0,则a2+a3<0;
④若b1•b2<0,则b2•b3<0其中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

10、已知a1,a2,a3,…,a8为各项都大于零的数列,则“a1+a8<a4+a5”是“a1,a2,a3,…,a8不是等比数列”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1,a2,a3,…,a10这10个数的和为45,则当函数f(x)=
10i=1
(x-ai)2
取得最小值时,此时x的值为
 

查看答案和解析>>

同步练习册答案