精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
4
-
y2
b2
=1(b∈N*) 的两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
(I)求b的值;
(II)抛物线y2=2px(p>0)的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.
解(I)根据题意a2=4,即a=2,
又,a2+b2=c2,||PF1|-|PF2||=2a=4,
又|PF1|•|PF2|=|F1F2|2=4c2,|PF2|<4,得
|PF2|2+4|PF2|-4c2=0在区间(0,4)上有解,即4c2=|PF2|2+4|PF2|有解
又|PF2|<4,故|PF2|2+4|PF2|<32
所以c2<8
因此b2<4,又b∈N*
所以b=1
(II)双曲线方程为
x2
4
-y2=1

右顶点坐标为(2,0),即F(2,0)
所以抛物线方程为y2=8x (1)
直线方程为y=x-2 (2)
由(1)(2)两式联立
y2=8x
y=x-2

解得
x1=6+4
2
y1=4+4
2
x2=6-4
2
y2=4-4
2

所以弦长|AB|=
(x2-x1)2+(y2-y1)2
=16
=16
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:
①当a为任意实数时,直线(a-1)x-y+2a+1=0恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是x2=
4
3
y

②已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,则双曲线的标准方程是
x2
5
-
y2
20
=1

③抛物线y=ax2(a≠0)的准线方程为y=-
1
4a

④已知双曲线
x2
4
+
y2
m
=1
,其离心率e∈(1,2),则m的取值范围是(-12,0).
其中所有正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-
y2
a
=1
的实轴为A1A2,虚轴为B1B2,将坐标系的右半平面沿y轴折起,使双曲线的右焦点F2折至点F,若点F在平面A1B1B2内的射影恰好是该双曲线的左顶点A1,且直线B1F与平面A1B1B2所成角的正切值为
5
5
,则a=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•佛山一模)已知双曲线
x2
4
-y2=1
,则其渐近线方程为
y=±
1
2
x
y=±
1
2
x
,离心率为
5
2
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•焦作一模)已知双曲线
x2
4
-
y2
12
=1
的离心率为e,焦点为F的抛物线y2=2px与直线y=k(x-
p
2
)交于A、B两点,且
|AF|
|FB|
=e,则k的值为
+
.
2
2
+
.
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个结论:
①若α、β为锐角,tan(α+β)=-3,tanβ=
1
2
,则α+2β=
4

②在△ABC中,若
AB
BC
>0
,则△ABC一定是钝角三角形;
③已知双曲线
x2
4
+
y2
m
=1
,其离心率e∈(1,2),则m的取值范围是(-12,0);
④当a为任意实数时,直线(a-1)x-y+2a+1=0恒过定点P,则焦点在y轴上且过点P的抛物线的标准方程是x2=
4
3
y
.其中所有正确结论的个数是(  )

查看答案和解析>>

同步练习册答案