【题目】在△ABC中,内角A、B、C所对的边为a、b、c,且 asinC﹣c(2+cosA)=0.
(1)求角A的大小;
(2)若△ABC的最大边长为 ,且sinC=2sinB,求最小边长.
【答案】
(1)解:∵ asinC﹣c(2+cosA)=0,
由正弦定理可得 sinAsinC﹣sinC(2+cosA)=0,
∵sinC≠0,
∴ sinA﹣(2+cosA)=0,
即 sinA﹣cosA=2,
∴sin(A﹣ )=1,
∴A﹣ =
∴A= π,
(2)解:由(1)可知,△ABC的最大边长为为a= ,
∵sinC=2sinB,
∴c=2b,
由余弦定理可得a2=b2+c2﹣2bccosA,
∴7=b2+4b2﹣2b2b(﹣ )=7b2,
∴b=1,
∴最小边长为1.
【解析】(1)根据正弦定理可得和两角和正弦公式即可求出答案,(2)根据(1)可以得到a是最边,由sinC=2sinB,可得c=2b,即b是最小边,根据余弦定理即可求出
科目:高中数学 来源: 题型:
【题目】随着生活水平的提高,越来越多的人参与了潜水这项活动.某潜水中心调查了100名男性与100女性下潜至距离水面5米时是否耳鸣,下图为其等高条形图:
①绘出列联表;
②根据列联表的独立性检验,能否在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系?
附:,其中.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差x(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
(1)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)=loga(x+1)﹣loga(1﹣x),a>0 且 a≠1.
(1)判断 f(x)的奇偶性并予以证明;
(2)当 a>1 时,求使 f(x)>0 的 x 的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最小正周期为,且其图象的一个对称轴为,将函数图象上所有点的橫坐标缩小到原来的倍,再将图象向左平移个单位长度,得到函数的图象.
(1)求的解析式,并写出其单调递增区间;
(2)求函数在区间上的零点;
(3)对于任意的实数,记函数在区间上的最大值为,最小值为,求函数在区间上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,四边形ADEF为梯形,AD//FE,∠AFE=60,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点.
(1)求证:EG//平面ABF;
(2)求三棱锥B-AEG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在以为直径的半圆周上,有异于的六个点,直径上有异于的四个点.则:
(1)以这12个点(包括)中的4个点为顶点,可作出多少个四边形?
(2)以这10个点(不包括)中的3个点为顶点,可作出多少个三角形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com