精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(I)求x为何值时,上取得最大值;
(II)设是单调递增函数,求a的取值范围.

(I)7;(II)

解析试题分析:(I)恒成立,
的最小值
 ……………………3分


(II)∵ F(x)是单调递增函数,恒成立

显然在恒成立.
恒成立. ………………………………8分
下面分情况讨论的解的情况.
时,显然不可能有上恒成立.
上恒成立.
时,又有两种情况:①
由①得,无解;由②得
综上所述各种情况,当上恒成立.
∴所求的a的取值范围为    ……………12分
考点:利用导数研究函数的单调性;利用导数研究函数的最值。
点评:本题主要考查导数的基本性质和应用、对数函数性质和平均值不等式等知识以及综合推理论证的能力,考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题


已知函数,且任意的

(1)求的值;
(2)试猜想的解析式,并用数学归纳法给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在实数使的定义域为,值域为?若存在,求出的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.证明:当时,函数没有极值点;当时,函数有且只有一个极值点,并求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且恒成立.
(1)求ab的值;
(2)若对,不等式恒成立,求实数m的取值范围.
(3)记,那么当时,是否存在区间),使得函数在区间上的值域恰好为?若存在,请求出区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)
已知函数).
(Ⅰ)求函数的单调区间;
(Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(1)求的单调区间;
(2)若内恒成立,求实数a的取值范围;
(3),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数是定义在R上的奇函数,当时,
(1)求的解析式
(2)解关于的不等式

查看答案和解析>>

同步练习册答案