精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.

【答案】
(1)解:∵f(x)=ax3+bx2的图象经过点M(1,4),∴a+b=4①式 …(1分)

f'(x)=3ax2+2bx,则f'(1)=3a+2b

由条件 ②式

由①②式解得a=1,b=3


(2)解:f(x)=x3+3x2,f'(x)=3x2+6x,

令f'(x)=3x2+6x≥0得x≥0或x≤﹣2,

∵函数f(x)在区间[m,m+1]上单调递增

∴[m,m+1](﹣∝,﹣2]∪[0,+∝)

∴m≥0或m+1≤﹣2

∴m≥0或m≤﹣3


【解析】(1)将M的坐标代入f(x)的解析式,得到关于a,b的一个等式;求出导函数,求出f′(1)即切线的斜率,利用垂直的两直线的斜率之积为﹣1,列出关于a,b的另一个等式,解方程组,求出a,b的值.(2)求出 f′(x),令f′(x)>0,求出函数的单调递增区间,据题意知[m,m+1](﹣∝,﹣2]∪[0,+∝),列出端点的大小,求出m的范围.
【考点精析】通过灵活运用导数的几何意义,掌握通过图像,我们可以看出当点趋近于时,直线与曲线相切.容易知道,割线的斜率是,当点趋近于时,函数处的导数就是切线PT的斜率k,即即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】用五点法作函数y=2sin(2x+ )的简图;并求函数的单调减区间以及函数取得最大值时x的取值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某算法的程序框图如图所示,如果输出的结果为5,57,则判断框内应为(

A.k≤6?
B.k≤5?
C.k>5?
D.k>4?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的三月十二日,是中国的植树节,林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两批树苗中各抽测了10株树苗的高度,规定高于128厘米的为“良种树苗”,测得高度如下(单位:厘米)
甲:137,121,131,120,129,119,132,123,125,133
乙:110,130,147,127,146,114,126,110,144,146
(1)根据抽测结果,完成答题卷中的茎叶图,并根据你填写的茎叶图,对甲、乙两批树苗的高度作比较,写出对两种树苗高度的统计结论;
(2)设抽测的10株甲种树苗高度平均值为 ,将这10株树苗的高度依次输入按程序框图进行运算,
(如图)问输出的S大小为多少?并说明S的统计学意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,求入射光线所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,∠ABC=90°,SA⊥平面ABC,点A在SB和SC上的射影分别为E、D.

(1)求证:DE⊥SC;
(2)若SA=AB=BC=1,求直线AD与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆C过点A(6,4),B(1,﹣1),且圆心在直线l:x﹣5y+7=0上.
(1)求圆C的方程;
(2)P为圆C上的任意一点,定点Q(7,0),求线段PQ中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明1+2+3+…+n2= ,则当n=k+1时左端应在n=k的基础上加上(
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,右顶点为.已知,其中为原点, 为椭圆的离心率.

1)求椭圆的方程及离心率的值;

2)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点.,且,求直线的斜率的取值范围.

查看答案和解析>>

同步练习册答案