精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形中,,点APB的中点,现沿AD将平面PAD折起,设.

(1)为直角时,求异面直线PCBD所成角的大小;

(2)为多少时,三棱锥的体积为?

(3)剪去梯形中的,留下长方形纸片,在BC边上任取一点E,把纸片沿AE折成直二面角,E点取何处时,使折起后两个端点间的距离最短.

【答案】1;(2;(3)当时,沿AE折起后间距离最短

【解析】

1)取PA的中点E,连结OEBE,则∠BOPPCBD所成的角,先证 PA⊥平面ABCD,利用勾股定理求出的三边长,使用余弦定理求出,进而可得角;(2P到平面ABCD的距离为,代入棱锥的体积公式求出得出θ的值;(3)设,则,根据定理可得化简,故而当时,间的距离最短,故而可得结论.

1)∵ABCD,∴四边形ABCD是矩形,

连结ACBDO,则OACBD的中点,

PA的中点E,连结OEBE

OE的中位线,∴

是异面直线PCBD所成的角,

平面ABCD

即异面直线PCBD所成的角为

2P到平面ABCD的距离

.

3)设,则,折起后平面平面AECD

为直线与平面AECD所成的角.

于是

要使最短,则折起后应最小,最大,

∴当时,最大,

此时最短,

即当时,沿AE折起后间距离最短.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(多选题)下列说法正确的是(

A.椭圆1上任意一点(非左右顶点)与左右顶点连线的斜率乘积为

B.过双曲线1焦点的弦中最短弦长为

C.抛物线y22px上两点Ax1y1).Bx2y2),则弦AB经过抛物线焦点的充要条件为x1x2

D.若直线与圆锥曲线有一个公共点,则该直线和圆锥曲线相切

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了选拔学生参加全市中学生物理竞赛,学校先从高三年级选取60名同学进行竞赛预选赛,将参加预选赛的学生成绩(单位:分)按范围分组,得到的频率分布直方图如图:

(1)计算这次预选赛的平均成绩(同一组中的数据用该组区间的中点值作代表);

(2)若对得分在前的学生进行校内奖励,估计获奖分数线;

(3)若这60名学生中男女生比例为,成绩不低于60分评估为“成绩良好”,否则评估为“成绩一般”,试完成下面列联表,是否有的把握认为“成绩良好”与“性别”有关?

成绩良好

成绩一般

合计

男生

女生

合计

附:

临界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中记载了有关特殊几何体的定义:阳马指底面为矩形,一侧棱垂直于底面的四棱锥,堑堵指底面是直角三角形,且侧棱垂直于底面的三棱柱.

1)某堑堵的三视图,如图1,网格中的每个小正方形的边长为1,求该堑堵的体积;

2)在堑堵中,如图2,若,当阳马的体积最大时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某人打算做一个正四棱锥形的金字塔模型,先用木料搭边框,再用其他材料填充,已知金字塔的每一条棱和边都相等.

(1)求证:直线AC垂直于直线SD

(2)若搭边框共使用木料24米,则需要多少立方米的填充材料才能将整个金字塔内部填满?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,第五组.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.

1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;

2)设m,n表示该班某两位同学的百米测试成绩,且已知求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当,求证

(2)若函数有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线1(a0b0)的左、右焦点分别为F1F2,点O为双曲线的中心,点P在双曲线右支上,PF1F2内切圆的圆心为Q,圆Qx轴相切于点A,过F2作直线PQ的垂线,垂足为B,则下列结论成立的是( )

A. |OA||OB|B. |OA||OB|

C. |OA||OB|D. |OA||OB|大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.

(1)求椭圆的方程;

(2)证明:直线恒过定点.

查看答案和解析>>

同步练习册答案