精英家教网 > 高中数学 > 题目详情
已知向量
a
=(1,0),
b
=(x,
3-(x-2)2
),设
a
b
的夹角为θ,则cosθ的值域为(  )
A、[
1
2
,1]
B、[0,
1
2
]
C、[0,
3
2
]
D、[
3
2
,1]
考点:平面向量数量积的运算
专题:计算题,平面向量及应用,直线与圆
分析:令y=
3-(x-2)2
,即有(x-2)2+y2=3(y≥0),表示圆心为(2,0),半径为
3
的上半圆.则
b
的终点在上半圆上,画出图象,通过观察即可得到夹角范围.
解答: 解:由于
b
=(x,
3-(x-2)2
),
令y=
3-(x-2)2
,即有(x-2)2+y2=3(y≥0),
表示圆心为(2,0),半径为
3
的上半圆.
b
的终点在上半圆上,
当向量
b
与半圆相切时,切线的倾斜角为
π
3

则有
a
b
的夹角为θ∈[0,
π
3
],
cosθ∈[
1
2
,1].
故选A.
点评:本题考查向量的夹角的求法,考查直线和圆的位置关系,考查数形结合的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=xcosx在(0,+∞)内的全部极值点按从小到大的顺序排列为x1,x2,…则对任意正整数n必有(  )
A、-
π
2
xn+1-xn
<0
B、
π
2
xn+1-xn<π
C、0<xn+1-xn
π
2
D、π<xn+1xn
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如程序框图所示,已知集合A={x|框图中输出的x值},B={y|框图中输出的y值};当x=1时,A∩B=(  )
A、∅B、{3}
C、{3,5}D、{1,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

lim
x→0
1-
1-x2
ex-cosx
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=2,an+1=λann+1+(2-λ)2n(n∈N*),其中λ>0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项全不为零的数列{an}的前n项和为Sn,且Sn=
1
2
anan+1(n∈N+),其中a1=1.
(1)求数列{an}的通项公式;
(2)试求所有的正整数m,使得
am+1am+2
am
为数列{Sn}中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

实系数一元二次方程x2+ax+2b=0的一个根在(0,1)上,另一个根在(1,2)上,则
b-2
a-1
的取值范围是(  )
A、[1,4]
B、(1,4)
C、[
1
4
,1]
D、(
1
4
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知点O是△ABC的重心,内角A、B、C所对的边长分别为a、b、c,且2a
OA
+b•
OB
+
2
3
3
c•
OC
=
0
,则角C的大小是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x≥0,则函数y=
(x+5)(x+2)
x+1
的最小值为
 

查看答案和解析>>

同步练习册答案