精英家教网 > 高中数学 > 题目详情
如图,已知ABCDEF为正六边形,若以C,F为焦点的双曲线恰好经过A,B,D,E四点,则该双曲线的离心率为   
【答案】分析:正六边形ABCDEF的边长为2,以FC为x轴,以FC的垂直平分线为y轴建立平面直角坐标系,根据题设条件能够求出双曲线的实半轴a和半焦距c,由此能够求出该双曲线的离心率.
解答:解:设正六边形ABCDEF的边长为2,以FC为x轴,以FC的垂直平分线为y轴建立平面直角坐标系,
由题意可知,B(1,),F(-2,0),C(2,0),c=2.
∴|BF|=,|BC|=



答案:
点评:恰当地选取平面直角坐标系,能够简化运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
(1)求直线AE与平面CDE所成角的大小(用反三角函数值表示);
(2)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,AE⊥平面ABC,AE
.
.
1
2
CD
,△ABC是正三角形.
(Ⅰ)求证:平面BDE⊥平面BCD;
(Ⅱ)求平面ABE与平面BCD所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求面ACD和面BCE所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CE的中点.
( I)求证:求证AF⊥CD;
(II)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知多面体ABCDE中,AB⊥面ACD,DE⊥面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
(Ⅰ)求证:AB∥面CDE;
(Ⅱ)在线段AC上找一点F使得AC⊥面DEF,并加以证明;
(Ⅲ)在线段CD是否存在一点M,使得BC∥面AEM,若存在,求出CM的长度;否则,说明理由.

查看答案和解析>>

同步练习册答案