精英家教网 > 高中数学 > 题目详情
已知四边形ABCD满足,E是BC的中点,将△BAE沿AE翻折成,F为的中点.
(1)求四棱锥的体积;
(2)证明:
(3)求面所成锐二面角的余弦值.
(1);(2)证明过程详见解析;(3)

试题分析:本题主要考查面面垂直、线面垂直、锥体的体积、线面平行、二面角、向量法等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由已知条件知,△ABE为等边三角形,所以取AE中点,则,由面面垂直的性质得B1M⊥面AECD,所以是锥体的高,最后利用锥体的计算公式求锥体的体积;第二问,连结DE交AC于O,由已知条件得AECD为棱形,O为DE中点,在中,利用中位线,得,再利用线面平行的判定得面ACF;第三问,根据题意,观察出ME,MD,两两垂直,所以以它们为轴建立空间直角坐标系,得到相关点的坐标以及相关向量的坐标,利用向量法中求平面的法向量的方法求出平面和平面的法向量,最后利用夹角公式求夹角的余弦.
(1)取AE的中点M,连结B1M,因为BA=AD=DC=BC=a,△ABE为等边三角形,则B1M=,又因为面B1AE⊥面AECD,所以B1M⊥面AECD,
所以        4分
(2)连结ED交AC于O,连结OF,因为AECD为菱形,OE=OD所以FO∥B1E,
所以。     7分

(3)连结MD,则∠AMD=,分别以ME,MD,MB1为x,y,z轴建系,则,

,,,所以1,,,设面ECB1的法向量为
令x="1," ,同理面ADB1的法向量为
, 所以
故面所成锐二面角的余弦值为.    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明:B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在边长为的正方形中,点在线段上,且,作//,分别交于点,作//,分别交于点,将该正方形沿折叠,使得重合,构成如图所示的三棱柱
(1)求证:平面; 
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直四棱柱中,底面是矩形,是侧棱的中点.

(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(1)证明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面DMF,并说明理由;
(2)在(1)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M为棱PB的中点.

(1)证明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.

(1)求证:BE⊥平面PCD;
(2)求二面角A一PD-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列结论:①若 ,,则 ; ②若,则
;   ④为非零不共线,若
非零不共线,则垂直
其中正确的为(     )
A.②③B.①②④C.④⑤D.③④

查看答案和解析>>

同步练习册答案