科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,在三棱锥中,
底面,点,
分别在棱上,且
(Ⅰ)求证:平面;
(Ⅱ)当为的中点时,求与平面所成的角的正弦;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,在四棱锥中,平面平面,为等边三角形,底面为菱形,,为的中点,。
(1)求证:平面;
(2) 求四棱锥的体积
(3)在线段上是否存在点,使平面; 若存在,求出的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
下面三个图中,右面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在左面画出(单位:cm).
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)在直三棱柱ABC-A1B1C1中,△ABC为等腰三角形,∠BAC=90°,且AB=AA1,E、F分别为C1C、BC的中点。
(1)求证:B1F⊥平面AEF
(2)求二面角B1-AE-F的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)下面的一组图形为某一四棱锥S-ABCD的侧面与底面。
(1)请画出四棱锥S-ABCD的直观图,是否存在一条侧棱垂直于底面?如果存在,请给出证明;如果不存在,请说明理由;
(2)若SA面ABCD,E为AB中点,求二面角E-SC-D的大小;
(3)求点D到面SEC的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.
(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com