精英家教网 > 高中数学 > 题目详情

(本小题12分)
如图,四棱锥中,底面为平行四边形 底面

(I)证明:
(II)设,求棱锥的高.

(Ⅰ )见解析;(Ⅱ)的高为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,在三棱锥中,
底面,点
分别在棱上,且
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的正弦;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在四棱锥中,平面平面为等边三角形,底面为菱形,的中点,
 
(1)求证:平面;
(2) 求四棱锥的体积
(3)在线段上是否存在点,使平面;  若存在,求出的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方形的边长为2,.将正方形沿对角线折起,
使,得到三棱锥,如图所示.
(1)当时,求证:
(2)当二面角的大小为时,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下面三个图中,右面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在左面画出(单位:cm).


(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,底面的中点,已知,求:(Ⅰ)三角形的面积;(II)三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在直三棱柱ABC-A1B1C1中,△ABC为等腰三角形,∠BAC=90°,且AB=AA1,E、F分别为C1C、BC的中点。
(1)求证:B1F⊥平面AEF
(2)求二面角B1-AE-F的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)下面的一组图形为某一四棱锥S-ABCD的侧面与底面。

(1)请画出四棱锥S-ABCD的直观图,是否存在一条侧棱垂直于底面?如果存在,请给出证明;如果不存在,请说明理由;
(2)若SA面ABCD,E为AB中点,求二面角E-SC-D的大小;
(3)求点D到面SEC的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角

(1)试判断直线与平面的位置关系,并说明理由;
(2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.

查看答案和解析>>

同步练习册答案