精英家教网 > 高中数学 > 题目详情
16.(1)求证$\frac{1}{2}≤\frac{1}{1×2}+\frac{1}{2×3}+…+\frac{1}{n(n+1)}<1$,(n∈N*
(2)已知a,b,c∈R,且a=b+c+1.证明:两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.

分析 (1)用裂项法进行数列求和可得$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{n(n+1)}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$,由此证得结论.
(2)假设两方程均没有两个不相等实数根,化简得出矛盾,从而得出结论.

解答 解:(1)证明:∵$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{n(n+1)}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$,n∈N*
∴$\frac{1}{2}$≤1-$\frac{1}{n+1}$<1.
(2)证明:假设两方程均没有两个不相等实数根,
则对于x2+x+b=0,△=1-4b≤0,化简可得b≥$\frac{1}{4}$.
∵a=b+c+1,∴a≥c+$\frac{5}{4}$.
对于x2+ax+c=0,△′=a2-4c≤0,即a2≤4c,
∴4c≥c2+$\frac{5}{2}$ c+$\frac{16}{25}$,即  ${(c-\frac{3}{4})}^{2}$+1≤0,矛盾,
故两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.

点评 本题主要考查用裂项法进行数列求和,用反证法证明数学命题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.单位圆中面积为2的扇形所对的圆心角的弧度数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线y2=2px(p>0)的准线与圆(x-2)2+y2=9相切,则p的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b3=9,a5+b5=25.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求数列{an},{bn}的前n项和Sn和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在等比数列{an}中,a1+a3=10,a4+a6=$\frac{5}{4}$,求这个数列的第四项及它的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.${log_5}(2x+1)={log_5}({x^2}-2),则x$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已函数f(x)是定义在[-1,1]上的奇函数,在[0,1]上f(x)=2x+ln(x+1)-1;
(1)求函数f(x)的解析式;并判断f(x)在[-1,1]上的单调性(不要求证明);
(2)解不等式f(2x-1)+f(1-x2)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.从高三抽出50名学生参加数学竞赛,由成绩得到如图的频率分布直方图.
试利用频率分布直方图求:
(1)这50名学生成绩的众数与中位数.  
(2)这50名学生的平均成绩.(答案精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,△ABC的面积是78cm2,其中BD=DC,AF=FE=EC,那么阴影部分的面积为13cm2

查看答案和解析>>

同步练习册答案