精英家教网 > 高中数学 > 题目详情
已知向量
a
=(2,1)和
b
=(x-1,y)垂直,则|
a
+
b
|的最小值为(  )
A、
5
B、5
C、2
5
D、
15
考点:平面向量数量积的运算
专题:平面向量及应用
分析:首先求出
a
+
b
的坐标然后利用坐标表示出它的模的平方,进一步用二次函数配方求最小值.
解答: 解:向量
a
=(2,1)和
b
=(x-1,y)垂直,则
a
+
b
=(x+1,y+1),
又向量
a
b
垂直,
a
b
=2(x-1)+y=0,即y=-2x+2;
所以|
a
+
b
|2=(x+1)2+(y+1)2=5x2-10x+10=5(x-1)2+5,
所以x=1时,|
a
+
b
|的最小值为
5

故选A.
点评:本题考查了向量的坐标运算、垂直的性质以及利用二次函数求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题p:?x>0,ex>1,则?p是(  )
A、?x0≤0,ex0≤1
B、?x0>0,ex0≤1
C、?x>0,ex≤1
D、?x≤0,ex≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),其中e=
1
2
,焦距为2,过点M(4,0)的直线l与椭圆C交于点A、B,点B在AM之间.又点A,B的中点横坐标为
4
7
,且
AM
MB

(Ⅰ)求椭圆C的标准方程; 
(Ⅱ)求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B为抛物线x2=2py(p>0)上两点,直线AB过焦点F,A、B在准线上的射影分别为C、D,则
CF
DF
=0;
②存在实数λ使得
AD
AO
(点O为坐标原点);
③若线段AB的中点P在准线上的射影为T,有
FT
AB
=0;
④抛物线在A点的切线和在B点切线一定相交,并且相互垂直.
其中说法正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

Q是椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,F1、F2为左、右焦点,过F1作∠F1QF2外角平分线的垂线交F2Q的延长线于P点,当Q点在椭圆上运动时,P点的轨迹是(  )
A、直线B、圆C、椭圆D、双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C对应的边分别为a、b、c,若
AB
AC
=
BA
BC
=1,则c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(cos
ωx
2
,sinωx-
3
3
) 
n
=(2cos
ωx
2
3
)
,且x∈R,ω>0,若函数f(x)=
m
n
在一个周期内的图象的最高点A、最低点B和一个零点C构成一个直角三角形的三个顶点.(如图所示)
(1)求ω的值及函数f(x)的值域;
(2)若0<ω<1,当f(x0)=-
4
2
3
x0∈[-
14
3
,-
8
3
]
,求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(
x
-
3
x
)n
的展开式的各项系数绝对值之和为1024,则展开式中x项的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量Pmg/L与时间th间的关系为P=P0e-kt.如果在前5个小时消除了10%的污染物,试回答:
(1)10个小时后还剩百分之几的污染物?
(2)污染物减少50%需要花多少时间(精确到1h)?
(3)画出污染物数量关于时间变化的函数图象,并在图象上表示计算结果.

查看答案和解析>>

同步练习册答案