精英家教网 > 高中数学 > 题目详情

【题目】将高二(1)班的四个同学分到语文、数学、英语三个兴趣小组,每个兴趣小组至少有一名同学的分配方法有多少种?下列结论正确的有(

A.B.

C.D.18

【答案】BC

【解析】

根据题意,有2种解法,

解法1,先将4人分三组,再将分好的三组全排列,由分布计数原理计算可得B正确;

解法2,在3个小组中选出1个,安排2个同学,再将剩下的2人全排列,对应剩下的2个兴趣小组,由分布计数原理计算可得C正确;即可得答案;

解:根据题意,

解法1,先将4人三组,有C42种分组方法,再将分好的三组全排列,对应三个兴趣小组,有A33种情况,则有C42A33种分配方法,B正确;

解法2,在3个小组中选出1个,安排2个同学,有C31C42种情况,再将剩下的2人全排列,对应剩下的2个兴趣小组,有A22种情况,则有C31C42A22种分配方法,C正确;

故选:BC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某医疗器械公司在全国共有个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这个销售点的年销量绘制出如下的频率分布直方图.

(1)完成年销售任务的销售点有多少个?

(2)若用分层抽样的方法从这个销售点中抽取容量为的样本,求该五组,(单位:千台)中每组分别应抽取的销售点数量.

(3)在(2)的条件下,从前两组中的销售点随机选取个,记这个销售点在中的个数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)讨论函数的单调性;

(2)当时,方程在区间内有唯一实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点,且椭圆过点,且是椭圆上位于第一象限的点,且的面积.

1)求点的坐标;

2)过点的直线与椭圆相交于点,直线轴相交于两点,点,则是否为定值,如果是定值,求出这个定值,如果不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 据观测统计,某湿地公园某种珍稀鸟类的现有个数约只,并以平均每年的速度增加.

(1)求两年后这种珍稀鸟类的大约个数;

(2)写出(珍稀鸟类的个数)关于(经过的年数)的函数关系式;

(3)约经过多少年以后,这种鸟类的个数达到现有个数的倍或以上?(结果为整数)(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知nN*.

1)设f(x)=a0+a1x+a2x2++anxn

①求a0+a1+a2++an

②若在a0a1a2,…,an中,唯一的最大的数是a4,试求n的值;

2)设f(x)=b0+b1(x+1)+b2(x+1)2++bn(x+1)n,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,过点作与轴平行的直线交函数的图像于点,过点图像的切线交轴于点,则面积的最小值为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的奇函数满足,且当时,,则下列结论正确的是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案