【题目】如图,在斜三棱柱中,AB=1,AC=2,,AB⊥AC,底面ABC.
(1)求直线与平面所成角的正弦值;
(2)求平面与平面所成锐二面角的余弦值.
【答案】(1).(2)
【解析】
(1)以A为原点,分别为x轴,y轴的正方向建立空间直角坐标系,求得向量的坐标,再根据底面,得到,又,由线面垂直的判定定理得到平面,从而是平面的一个法向量,然后由求解.
(2)由(1)知是平面的一个法向量,再求得平面的一个法向量,然后由求解.
(1)以A为原点,分别为x轴,y轴的正方向建立如图所示的空间直角坐标系,
则,,,,,
则,
∵底面,底面,
∴,
又∵,,
平面,平面,
∴平面,
∴是平面的一个法向量,
∴,
故所求直线与平面所成角的正弦值为
(2),,
设为平面的一个法向量,
则,
令,得,
得平面的一个法向量为,
又由(1)得是平面的一个法向量,
∴,
故所求面与平面所成锐二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】在数列中,若是正整数,且,…,则称为“绝对差数列”.
(1)举出一个前5项不为零的“绝对差数列”(只要求写出前10项);
(2)若“绝对差数列”中,,数列满足,,…,分别判断当时,与的极限是否存在?如果存在,求出其极限值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】销售某种活海鲜,根据以往的销售情况,按日需量(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.这种海鲜经销商进价成本为每公斤20元,当天进货当天以每公斤30元进行销售,当天未售出的须全部以每公斤10元卖给冷冻库.某海鲜产品经销商某天购进了300公斤这种海鲜,设当天利润为元.
(I)求关于的函数关系式;
(II)结合直方图估计利润不小于800元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】①;②;③(为常数)这个条件中选择个条件,补全下列试题后完成解答,设等差数列的前项和为,若数列的各项均为正整数,且满足公差,____________.
(1)求数列的通项公式;
(2)令,求数列的前项的和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂连续6天对新研发的产品按事先拟定的价格进行试销,得到一组数据如下表所示
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 | 4月6日 |
试销价元 | 9 | 11 | 10 | 12 | 13 | 14 |
产品销量件 | 40 | 32 | 29 | 35 | 44 |
(1)试根据4月2日、3日、4日的三组数据,求关于的线性回归方程,并预测4月6日的产品销售量;
(2)若选取两组数据确定回归方程,求选取得两组数据恰好是不相邻两天的事件的概率.
参考公式:
其中 ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在之间,根据统计结果,做出频率分布直方图如下:
(Ⅰ)求这100位作者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,作者年龄X服从正态分布,其中近似为样本平
均数,近似为样本方差.
(i)利用该正态分布,求;
(ii)央视媒体平台从年龄在和的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是Y,求变量Y的分布列和数学期望.附:,若,则,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com