精英家教网 > 高中数学 > 题目详情
6.函数$f(x)={log_{\frac{1}{2}}}({x^2}-2x-3)$的单调减区间是(3,+∞).

分析 令t=x2-2x-3>0,求得函数f(x)的定义域,再根据复合函数的单调性,本题即求函数t在定义域内的单调增区间,再利用二次函数的性质可得结论.

解答 解:令t=x2-2x-3>0,求得x<-1,或x>3,可得函数f(x)的定义域为{x|x<-1,或x>3}
则f(x)=g(t)=${log}_{\frac{1}{2}}t$,本题即求函数t在定义域内的单调增区间.
再利用二次函数的性质可得t在定义域内的增区间为(3,+∞),
故答案为:(3,+∞)

点评 本题主要考查复合函数的单调性,二次函数、对函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在等比数列{an}中,a1=-3,a2=-6,则a4的值为(  )
A.-24B.24C.±24D.-12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,AO⊥BC于O,OB=2OA=2OC=4,点D,E,F分别为OA,OB,OC的中点,BD与AE相交于H,CD与AF相交于G,将△ABO沿OA折起,使二面角B-OA-C为直二面角.
(Ⅰ)在底面△BOC的边BC上是否存在一点P,使得OP⊥GH,若存在,请计算BP的长度;若不存在,请说明理由;
(Ⅱ)求二面角A-GH-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a>b>0,椭圆C1的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,双曲线C2的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,C1与C2的离心率之积为$\frac{{\sqrt{3}}}{2}$,则双曲线C2的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{6}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=90°,∠EAC=60°,AB=AC.
(1)在直线AE上是否存在一点P,使得CP⊥平面ABE?请证明你的结论;
(2)求直线BC与平面ABE所成角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为$\sqrt{3}$的线段的概率为(  )
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\frac{x^2}{4}+\frac{y^2}{2+k}=1$的离心率为$\frac{1}{2}$,则k的值为(  )
A.$-\frac{10}{3}$B.$\frac{10}{3}$C.$\frac{10}{3}$或1D.$-\frac{10}{3}$或1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的前n项和${S_n}={n^3}$,则a6+a7+a8=387.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若直线l在x轴的截距与在y轴的截距都是负数,则(  )
A.l的倾斜角为锐角且不过第一象限B.l的倾斜角为钝角且不过第一象限
C.l的倾斜角为锐角且不过第四象限D.l的倾斜角为钝角且不过第四象限

查看答案和解析>>

同步练习册答案