精英家教网 > 高中数学 > 题目详情
已知命题p:关于x的不等式ax>1,(a>0,a≠1)的解集是{x|x<0},命题q:函数y=lg(x2-x+a)的定义域为R,若p∨q为真p∧q为假,求实数a的取值范围.
考点:复合命题的真假
专题:简易逻辑
分析:先根据指数函数的单调性、对数函数的定义域及一元二次不等式的解的情况和判别式的关系求出命题p,q下的a的取值范围,再根据p∨q为真,p∧q为假,得到p真q假和p假q真两种情况,求出每种情况下的a的取值范围并求并集即可.
解答: 解:命题p:0<a<1;
命题q:函数y=lg(x2-x+a)的定义域为R,则:
x2-x+a>0的解集为R;
∴△=1-4a<0,a
1
4

若p∨q为真p∧q为假,则p,q一真一假;
当p真q假时,0<a<1,且a≤
1
4
,∴0<a≤
1
4

当p假q真时,a>1,且a
1
4
,∴a>1;
∴a的取值范围是(0,
1
4
]∪(1,+∞)
点评:考查指数函数的单调性,一元二次不等式解的情况和判别式△的关系,以及p∨q,p∧q的真假和p,q真假的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-6(x≥
3
或x≤-
3
)
-x2(-
3
<x<
3
)
,设0<m<n,且f(m)=f(n),则mn2的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足:i•z=1+i,则z2=(  )
A、-2iB、-2C、2iD、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z=x-2y,其中x,y满足不等式组
x≥0
x≤y
x+y≤2
,则z的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-sin2ωx)•tan(
π
4
+ωx),(ω>0)其图象上相邻的两个最高点之间的距离为π.
(I)求f(x+
π
12
)在区间[-
π
6
π
4
]上的最小值,并求出此时x的值;
(Ⅱ)若α∈(
12
π
2
),f(α+
π
3
)=
1
3
,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过两条直线2x+y-8=0和x-2y+1=0的交点.
(1)若直线l平行于直线3x-2y+4=0,求直线l的方程;
(2)若直线l垂直于直线4x-3y-7=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=psinωx•cosωx-cos2ωx(p>0,ω>0)的最大值为
1
2
,最小正周期为
π
2

(Ⅰ)求:f(x)的解析式;
(Ⅱ)若△ABC的三条边为a,b,c,满足a2=bc,a边所对的角为A.求:角A的取值范围及函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,则该程序运行后输出的s值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是各条棱长均为2的正四面体的三视图,则正视图三角形的面积为(  )
A、
3
B、
2
3
6
C、2
3
D、
4
3
6

查看答案和解析>>

同步练习册答案