精英家教网 > 高中数学 > 题目详情
9.若复数z满足$|{\begin{array}{l}1&i\\{1-2i}&z\end{array}}|=0$(i为虚数单位),则|z|=$\sqrt{5}$.

分析 利用行列式的性质可得z-i(1-2i)=0,再利用复数的运算法则、模的计算公式即可得出.

解答 解:∵复数z满足$|{\begin{array}{l}1&i\\{1-2i}&z\end{array}}|=0$(i为虚数单位),
∴z-i(1-2i)=0,
化为z=i+2.
则|z|=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查了行列式的性质、复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在等差数列{an}中,若a4+a6=12,Sn是数列{an}的前n项和,则S9的值为54.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线中心在原点,焦点在x轴上,过左焦点F1作倾斜角为30°的直线l,交双曲线于A,B两点,F2为双曲线的右焦点,且AF2⊥x轴,如图.
(Ⅰ)求双曲线的离心率;
(Ⅱ)若|AB|=16,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{{m}^{2}}$=1的左右焦点分别为F1,F2,双曲线外一点P关于点F1、F2的对称点分别为A、B,线段PQ的中点在曲线C上,则|QA|-|QB|的值为(  )
A.6B.12C.24D.4|m|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.李克强总理在很多重大场合都提出“大众创业,万众创新”.某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的20%.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的10%,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.
(1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元)
(2)如果银行贷款的年利率为5%,问该创客一年(12个月)能否还清银行贷款?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果a>b>0,那么下列不等式中不正确的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.$\frac{1}{a}>\frac{1}{b}$C.ab>b2D.a2>ab

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知平面向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$满足$\overrightarrow{OA}•\overrightarrow{OB}=0$,且$|{\overrightarrow{OA}}|=|{\overrightarrow{OC}}|=1$,$|{\overrightarrow{OB}}|=\sqrt{3}$,则$\overrightarrow{CA}•\overrightarrow{CB}$的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.双曲线$\frac{{x}^{2}}{4}$-y2=1的两个焦点为F1、F2,点P在双曲线上,△F1PF2的面积为$\sqrt{3}$,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点A(x1,y1),B(x2,y2)是抛物线y2=4x过焦点弦的两端点,且x1+x2=3,求|AB|的值.

查看答案和解析>>

同步练习册答案