精英家教网 > 高中数学 > 题目详情
14.比较log2(3x+1)与${log}_{\sqrt{2}}$(x一3)的大小.

分析 先求出函数的定义域,利用作差发比较大小即可.

解答 解:要使log2(3x+1)与${log}_{\sqrt{2}}$(x一3)有意义,
则$\left\{\begin{array}{l}{3x+1>0}\\{x-3>0}\end{array}\right.$,
解得x>3,
∴log2(3x+1)-${log}_{\sqrt{2}}$(x一3)=log2(3x+1)-$\frac{lo{g}_{2}(x-3)}{lo{g}_{2}\sqrt{2}}$=log2(3x+1)-2log2(x-3)=log2$\frac{3x+1}{(x-3)^{2}}$,
当$\frac{3x+1}{(x-3)^{2}}$>1时,即3x+1>(x-3)2时,即x2-9x+8<0,解得1<x<8,
∴3<x<8时,log2(3x+1)-${log}_{\sqrt{2}}$(x一3)>0,
∴log2(3x+1)<${log}_{\sqrt{2}}$(x一3).
当$\frac{3x+1}{(x-3)^{2}}$<1时,即3x+1<(x-3)2时,即x2-9x+8>0,解得x<1,或x>8,
∴当x>8时,log2(3x+1)-${log}_{\sqrt{2}}$(x一3)<0,
∴log2(3x+1)<${log}_{\sqrt{2}}$(x一3).

点评 本题主要考查了对数函数的图象及性质,以及分类讨论的思想,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设m>1在约束条件$\left\{\begin{array}{l}{y≥x}\\{y≤mx}\\{x+y≤1}\end{array}\right.$下,目标函数z=x+5y的最大值为4,则m的值为3,目标函数z=2x-y的最小值为$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设f(x)=$\frac{{2}^{x+4}}{{4}^{x}+8}$,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=sin(x+φ)cosx的图象关于原点(0,0)对称,且x∈(0,$\frac{π}{2}$)时,f(x)>0.
(1)求f(x)的解析式;
(2)作函数y=|f(x)|+f(x)的图象,写出单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知分别在椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1与抛物线y=x2+2m2上的两动点M,N间的距离的最小值是5,则实数m的值为±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设不等式组$\left\{\begin{array}{l}{2x-y+1>0}\\{x+m<0}\\{y-m>0}\end{array}\right.$表示的平面区域内的所有的点P(x0,y0),都满足x0-2y0<2,则m的取值范围是(
A.(-$\frac{2}{3}$,$\frac{1}{3}$)B.(-$\frac{2}{3}$,+∞)C.[-$\frac{2}{3}$,$\frac{1}{3}$)D.[-$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=$\frac{n}{m+x}$,集合A={x|f(x)=x},B={x|f(x-2)+x=0}.
(1)若A={3},求m,n的值;
(2)在(1)的条件下,求集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式x2+6x+9≥0的解集为(  )
A.B.RC.{x|x≤-3}D.{x|x≤-3或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x3+x-3在(-∞,+∞)上单调增加,则方程x3+x-3=0的一个根的区间是(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

同步练习册答案