【题目】如图,矩形ABCD所在的平面和平面互相垂直,等腰梯形中, , , , , 分别为的中点, 为底面的重心.
(Ⅰ)求证: ∥平面;
(Ⅱ)求直线与平面所成角的正弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)根据重心定义,可得连结延长交于,则为的中点,根据三角形中位线性质得∥,再由线面平行判定定理得∥平面,同理可得∥平面,因此平面∥平面,即得∥平面;(2)利用面面垂直性质定理寻找线面垂直:作AQ⊥EF,则得AQ⊥平面ABCD,作AH⊥DQ,可得AH⊥面EQDC,因此直线与平面所成角为∠ACH,解直角三角形得直线AC与平面CEF所成角正弦值
试题解析:(Ⅰ)连结延长交于,则为的中点,又为的中点,
∴∥,又∵平面,∴∥平面
连结,则∥, 平面,∴∥平面
∴平面∥平面, 平面
平面
(Ⅱ)作AQ⊥EF交EF延长线于Q,作AH⊥DQ交DQ于H,则AH⊥面EQDC
∴∠ACH就是直线AC与平面CEF所成角
在RtADQ中,AH=
在RtACH中,sin∠ACH=
直线AC与平面CEF所成角正弦值为
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=x2﹣16x+q+3:
(1)若函数在区间[﹣1,1]上存在零点,求实数q的取值范围;
(2)问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12﹣t.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣2x2+ax+b且f(2)=﹣3.
(1)若函数f(x)的图象关于直线x=1对称,求函数f(x)在区间[﹣2,3]上的值域;
(2)若函数f(x)在区间[1,+∞)上递减,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二次函数f(x)=ax2+bx+c(a≠0)在区间[﹣2,2]上的最大值、最小值分别是M,m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)为定义在R上的奇函数,且当x>0时,f(x)=1﹣x2 .
(1)求函数f(x)的解析式;
(2)作出函数f(x)的图象.
(3)若函数f(x)在区间[a,a+1]上单调,直接写出实数a的取值范围.(不必写出演算过程)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(﹣4,4)、B(4,4),直线AM与BM相交于点M,且直线AM的斜率与直线BM的斜率之差为﹣2,点M的轨迹为曲线C.
(1)求曲线C 的轨迹方程;
(2)Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为D、E,求△QDE的面积S的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在高中学习过程中,同学们经常这样说:“数学物理不分家,如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的数学和物理成绩,如下表:
编号 成绩 | 1 | 2 | 3 | 4 | 5 |
物理() | 90 | 85 | 74 | 68 | 63 |
数学() | 130 | 125 | 110 | 95 | 90 |
(1)求数学成绩对物理成绩的线性回归方程 (精确到),若某位学生的物理成绩为80分,预测他的数学成绩(结果精确到个位);
(2)要从抽取的这五位学生中随机选出2位参加一项知识竞赛,求选中的学生的数学成绩至少有一位高于120分的概率.
(参考公式: , .)
(参考数据: , .)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在“出彩中国人”的一期比赛中,有6位歌手(1~6)登台演出,由现场的百家大众媒体投票选出最受欢迎的出彩之星,各家媒体独立地在投票器上选出3位出彩候选人,其中媒体甲是1号歌手的歌迷,他必选1号,另在2号至6号中随机的选2名;媒体乙不欣赏2号歌手,他必不选2号;媒体丙对6位歌手的演唱没有偏爱,因此在1至6号歌手中随机的选出3名.
(1)求媒体甲选中3号且媒体乙未选中3号歌手的概率;
(2)X表示3号歌手得到媒体甲、乙、丙的票数之和,求X的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com