精英家教网 > 高中数学 > 题目详情
9.已知$\overrightarrow{a}$=(1,-2,1),$\overrightarrow{a}$+$\overrightarrow{b}$=(-1,2,-1),则$\overrightarrow{b}$等于(  )
A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)

分析 根据空间向量的线性运算,求出向量$\overrightarrow{b}$的坐标即可.

解答 解:∵$\overrightarrow{a}$=(1,-2,1),$\overrightarrow{a}$+$\overrightarrow{b}$=(-1,2,-1),
∴$\overrightarrow{b}$=$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{a}$=(-1-1,2-(-2),-1-1)=(-2,4,-2).
故答案为:B.

点评 本题考查了空间向量的线性运算与坐标表示的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知点A(2,2)及圆C:x2+y2+4x-8y+4=0.
(Ⅰ)若直线l过点A且被圆C截得的线段长为4$\sqrt{3}$,求直线l的方程;
(Ⅱ)由圆C外一点P(a,b)向圆C引切线PQ,切点为Q,且满足|PQ|=|PA|,求线段PQ长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2-2x,则下列各点中不在函数图象上的是(  )
A.(1,-1)B.(-1,3)C.(2,0)D.(-2,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2x+$\frac{m}{{2}^{x}}$(m为常数)为偶函数.
(1)求实数m的值;
(2)判断f(x)在[0,+∞)上的单调性,并用单调性的定义证明;
(3)求不等式f(logax)>$\frac{5}{2}$(a>0且a≠1)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某场排球赛决赛将在甲队与乙队之间展开,据以往统计,甲队在每局比赛中胜乙队的概率为$\frac{2}{3}$,比赛采取五局三胜制,即谁先胜三局谁就获胜,并停止比赛,则甲队以3:1获胜的概率为(  )
A.$\frac{2}{3}$B.$\frac{8}{27}$C.$\frac{2}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组向量中不平行的是(  )
A.$\overrightarrow{a}$=(1,2,-2),$\overrightarrow{b}$=(-2,-4,4)B.$\overrightarrow{c}$=(1,0,0),$\overrightarrow{d}$=(-3,0,0)
C.$\overrightarrow{e}$=(2,3,0),$\overrightarrow{f}$=(0,0,0)D.$\overrightarrow{g}$=(-2,3,5)$\overrightarrow{h}$=(16,-24,40)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)若x是某三角形的一个内角,且f(x)=-$\frac{\sqrt{2}}{2}$,求角x的大小;
(2)当x∈[0,$\frac{π}{2}$]时,求f(x)的最小值及取得最小值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若在定义域内存在实数x满足f(-x)=f(x),则称函数f(x)为“局部偶函数”.
(Ⅰ)判断函数f(x)=x-$\frac{1}{x}$是否为“局部偶函数”,并说明理由;
(Ⅱ)若F(x)=$\left\{\begin{array}{l}{{9}^{x}-k•{3}^{x}+{k}^{2}-16,x>0}\\{k•{3}^{x}-{9}^{x},x<0}\end{array}\right.$为“局部偶函数”,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.己知A(-1,4),B(3,-2),以AB为直径的圆交直线y=x+1于M、N两点,则|MN|=5$\sqrt{2}$.

查看答案和解析>>

同步练习册答案