精英家教网 > 高中数学 > 题目详情
16.将下列函数配方:
(1)f(x)=x2-2x+3
(2)f(x)=3x2+6x-1
( 3 )f(x)=-2x2+3x-2.

分析 利用二次函数的顶点式方程化简求解即可.

解答 解:(1)f(x)=x2-2x+3=(x-1)2+2.
(2)f(x)=3x2+6x-1=3(x-1)2-4
( 3 )f(x)=-2x2+3x-2=-2(x-$\frac{3}{4}$)2-$\frac{7}{8}$.

点评 本题考查二次函数的简单性质的应用,顶点式方程的化简求解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.借助计算器用二分法求方程2x+3x=7的近似解x0=1.43(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.从N个编号中要抽取n个号码入样,若采用系统抽样方法抽取,则分段间隔应为([$\frac{N}{n}$]表示$\frac{N}{n}$的整数部分)(  )
A.$\frac{N}{n}$B.nC.[$\frac{N}{n}$]D.[$\frac{N}{n}$]+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=sinx-cos(x-\frac{π}{6})$的值域为(  )
A.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$B.$[-\sqrt{3},\sqrt{3}]$C.[-2,2]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知定义:在数列{an}中,若an2-an-12=p(n≥2,n∈N*,p为常数),则称数列{an}为等方差数列,下列判断:
①{(-1)n}是“等方差数列”;
②若{an}是“等方差数列”,则数列{${a}_{n}^{2}$}是等差数列;
③若{an}既是“等方差数列”,又是等差数列,则该数列是常数列;
④若{an}是“等方差数列”,则数列{akn}(k∈N*,k为常数)可能也是“等方差数列”.
其中正确的结论是①②③④.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若空间向量$\overrightarrow a,\overrightarrow b$满足:$(\overrightarrow a+\overrightarrow b)⊥(2\overrightarrow a-\overrightarrow b)$,$(\overrightarrow a-2\overrightarrow b)⊥(2\overrightarrow a+\overrightarrow b)$,则cos<$\overrightarrow a,\overrightarrow b>$=$-\frac{{\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=|x+\frac{1}{a}|+|x-a|(a>0)$.
(1)求证:f(x)≥2;
(2)若f(2)<4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设等比数列{an}中,每项均是正数,且a5a6=81,则log${\;}_{\frac{1}{3}}$a1+log${\;}_{\frac{1}{3}}$a2+log${\;}_{\frac{1}{3}}$a3+…+log${\;}_{\frac{1}{3}}$a10=(  )
A.20B.-20C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设Sn为数列{an}的前n项和,且S3=7,a1+3,a3+4的等差中项为3a2
(1)求a2
(2)若{an}是等比数列,求an

查看答案和解析>>

同步练习册答案