精英家教网 > 高中数学 > 题目详情
已知分别是椭圆的左、右顶点,点在椭圆上,且直线与直线的斜率之积为
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,已知是椭圆上不同于顶点的两点,直线交于点,直线交于点.① 求证:;② 若弦过椭圆的右焦点,求直线的方程.
(Ⅰ);(Ⅱ)①见解析;②.

试题分析:(Ⅰ)根据点在椭圆上,且直线与直线的斜率之积为,列出方程组即可求出;(Ⅱ)①欲证:,只需证:,找到这个结论成立的条件,然后证明这些条件满足即可;②分成和直线斜率存在两种情况,利用经过这一条件,把问题变成直线与椭圆的交点,从而可以借助一元二次方程跟与系数的关系解题.
试题解析:(Ⅰ)由题,,由点在椭圆上知,则有:
,①
,                   ②
以上两式可解得.所以椭圆.                4分
(Ⅱ)① 设,则直线、直线
两式联立消去得:
同理:直线,联立得:.  6分
欲证:,只需证:,只需证:
等价于:
,所以
故有:.                                 9分
② (1)当时,由可求得:;             10分
(2)当直线斜率存在时,设

由(Ⅱ)知:
代入上式得:
解得,由①知
综合(1) (1),,故直线.                      14分.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,直线与椭圆C相交于A、B两点.
(1)求椭圆C的方程;(2)求的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的对称中心为坐标原点,上焦点为,离心率.

(Ⅰ)求椭圆的方程;
(Ⅱ)设轴上的动点,过点作直线与直线垂直,试探究直线与椭圆的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的离心率是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求为坐标原点)面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆的方程;
(II)直线与椭圆交于两点,且线段的垂直平分线经过点,求为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点坐标为,则其离心率等于              (  )
A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴在轴上,且焦距为4,则等于(  )
A.4B.5C.7D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线的焦点重合, 则此椭圆方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案