精英家教网 > 高中数学 > 题目详情

【题目】已知圆,点是圆上一动点,点在线段上,点在半径上,且满足.

(1)在圆上运动时,求点的轨迹的方程

(2)设过点的直线与轨迹交于点不在轴上),垂直于的直线交于点,与轴交于点,若,求点横坐标的取值范围.

【答案】(1)(2)

【解析】分析:(1)由直线为线段的垂直平分线,则,可得点的轨迹是以点为焦点,焦距为,长轴为的椭圆;

(2)由题意直线的斜率存在,设,于是直线的方程为,设,联立方程组,利用根与系数的关系得,设所在直线方程为,令,得,利用,即可得出

详解:(1)由题意知,直线为线段的垂直平分线,所以

所以点的轨迹是以点为焦点,焦距为4,长轴为4的椭圆,

故点的轨迹的方程为 .

(2)由题意直线的斜率存在设为,于是直线的方程为

,联立,得

因为,由根与系数的关系得

的横坐标为,则

所在直线方程为

,得,·

于是

整理得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1852年,英国来华传教士伟烈亚力将《孙子算经》中物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为中国剩余定理”.“中国剩余定理讲的是一个关于整除的问题,例如求120002000个整数中,能被3除余1且被7除余1的数的个数,现由程序框图,其中MOD函数是一个求余函数,记表示m除以n的余数,例如,则输出i为( .

A.98B.97C.96D.95

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定直线的距离与到定点的距离之比为.

1)求点的轨迹的方程;

2)已知点,在轴上是否存在一点,使得曲线上另有一点,满足,且?若存在,求出所有符合条件的点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是正方形,点在以为直径的半圆弧上(不与重合),为线段的中点,现将正方形沿折起,使得平面平面.

1)证明:平面.

2)三棱锥的体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)证明:(i

ii)对任意恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)写出曲线的极坐标方程,并求出曲线公共弦所在直线的极坐标方程;

2)若射线与曲线交于两点,与曲线交于点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”,其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第五天走的路程为(

A. 6B. 12C. 24D. 48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是边长为的菱形,交于点,平面平面.

(1)求证:平面

(2)若为等边三角形,点的中点,求二面角的余弦值.

查看答案和解析>>

同步练习册答案